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Context : French Research Agency project HECO

Hoclé

From HEating to COoling

The project : FE simulation of full scale industrial furnace/quenching tank for the
prediction of thermal history of formed metal parts.
One problem : Simulation of the axial fans/agitators yields very fine mesh = costly
operation
But we are not interested in the high fidelity description of the flow
around the rotating solids
Solution replace them by reduced order models

Vitesse(m/s) Magnitude
I 1.000e-01

0.01

I 1.000e-03
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Objective and approach

Objective

Build adaptive POD-ROM for a rigid
bodies in forced rotation inside a fluid
domain.

Difficulties with POD

1. moving boundaries : not compatible
with spatial POD basis.

2. robustness w.r.t change of
parameters.

Approach

1. Monolithic description of FSI and exploit the geometry!.

2. Interpolation of POD-bases by novel grassmannian kriging 2.

1. FALAIZE, LIBERGE et HAMDOUNI, "POD-based reduced order model for flows induced by rigid solids in forced
rotation”, 2019.
2. MOSQUERA, "“Interpolation sur les variétés grassmanniennes et applications la réduction de modles en
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mécanique”, 2018.



Multiphase MOR : Domains

Domains description

e Computational domain Q = Qs(t) U Qr(t).

1 if x € Qs(t),

e Characteristic function xs(x, t) = { 0 otherwi
otherwise.

Rotation velocity

uo(x,t) =w x (x —xy,), Vx€Q and VteT

Rotation constraint
u(x,t) —uw(x,t) =0, Vxe€Qs(t) and Vte T, (1)

Consequence : no deformation of the solid domain

D(US) =V.-us =0, VXEQs(t), vVt e T. (2)
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Multiphase MOR : Governing equations

Navier-Stokes + solid rotation constraint

Ju
— +Vu- = V- f—A,
p(atJr u u) o+
V-u = 0,
xs(u—-uy) = 0,

A is the Lagrange multiplier associated with the rotation constraint.
Boundary conditions

ur = up Vx € Ip, Vt € T, constant Dirichlet,
or-n=0 Vxely=r\Tlp, VteT, Outflow.
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Multiphase MOR : Numerical solution

Iterative relaxation of the solid rotation constraint 3

At each time-step

Initial values u®, p® (e.g. from the previous time-step).
Initialize £ < 0, A+~ 0

While not converge, do
Update £+ £+ 1

Solve for uf, p® :

p (6eu® +Vut - ut|v) — (F = xs A7 v) — (p°|V-v) +2n (D (u*)|D(v)) =0,
(V-u'[q) =0

Uzawa update AL

A= X rys (uf — uw)

In the sequel, v will be chosen as the POD modes.

3. GLowINsKI et LE TALLEC, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, 1989.
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Standard ROM : POD of the fluctuating velocity

Ersatz

Nu
tp(x, ta) = Tp(x) + Y _ ¢¥(x) ai(tn)
i=1
with
e Up(x) the time averaged velocity,
o O = ($}(x)),.;, thetruncated POD basis,

e a= (ai(t))lgignu the temporal coefficients.
Remarks

e The velocity POD modes are divergence free V- ¢} =0, 1 < i < ny and the
approximation Uy, automatically satisfies the continuity equation V - 4, = 0.

e Dirichlet boundary conditions are all included in the mean field w(x) = POD
modes vanish.
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ROM1 : Galerkin projection of the mo tum equations

Momentum equations

A'%+B-a+CZa®a+E[+F:0' (3)
Uzawa update
Ny
AL = ALy <U+Z¢7""’“‘”>’ ®
i=1
Coefficients
A= e (f|et) oo,
B = (Ve miva-ef|ef)+2n (D(ef)[0(st)),
Cxk = »p V¢J‘.’ . ¢'ﬁ| ¢7) » ©
Ef = (Xs A[‘ 47,5’)*
Foo= p(va-alef)+2n (D(s2)|D () (Fle¥).

Still depends on the high dimension due to projections!
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Proposed ROM : POD of the characteristic function

Ersatz
(1) =xXs+ > o)X (x)ci(0).
i=1
with

e Xs(x) the angle averaged characteristic function,

o OX — (d)lx(x))lgignx the truncated POD basis,

e c= (Ci(e))lgignx the angular coefficients.

Remarks

e Forced rotation of the solid domain = the 6 : t — 0(t) is known explicitly.

e The (Ci(e))lgignx can be learned a priori (we use periodic splines).
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ROM2 : Galerkin projection of the Uzawa iteration

Now, due to the iterative procedure for updating the Lagrange multiplier A, the
~¢ —~

reduced Lagrange multiplier A = ()‘f)lgiﬁnu can be used in place of E¢ in the

reduced momentum equation (3) :

Momentum equations

d "y
A-d—j+B~a+C:a®a+>\[+F:0.

Uzawa update

:\Hl::\1+r(G<a+H-c+L:c®a+M),

Coefficients
Moo= (st e),
G = ( s¢" ¢")
Hix = (¢f (T —uw)| oY),
L = (9 ¢f\¢,—“),
M = (- uw)lof).
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Interpolation of the reduced order models

Question

Provided a set of POD bases (®(X;)), ., With f®(X;) ®();) = Iy, how to derive
the POD basis for a new parameter \ without computing the full order solution ?

One solution

Interpolate the set (®();)) w.rtthe (\j),;

1<i<N <N

ROML1 : Interpolate POD basis for the velocity ®" only,

ROM2 : Interpolate POD bases for the velocity ®“ and the characteristic
function ®X if the geometry changed

In this work, we focus on the interpolation over a set of Reynolds number (related

with the solid rotation velocity), but the proposed method remains valid for
multi-parameters setting.
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Wh

at are the proper objects to interpolate ?

POD-Galerkin ROM is independent of the choice of the POD basis
For every orthogonal matrix A € O(m) = {B € R™*™ . TBB = I}, we have
upa = AT (pA)u
SATA) Tpu
dTduy

= Ugp

= Interpolate the vectorial subspaces* (¢,)".; engendered by the
POD bases (¢;)Y,

e Interpolate in the set of all m-dimensional vectorial subspaces of the
n-dimensional euclidian space.

e This is the the Grassmann manifold G»(R"), a differential manifold of
dimension m x (n — m).

4.

AMSALLEM et FARHAT, “Interpolation method for adapting reduced-order models and application to

aeroelasticity”, 2008.
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Grassmannian Kriging

Principle

1. Each point ¢; is considered as the realization of a random process Z = pu +§
with mean 1 and § a stationary random process with values in Tg Gm(R") :
r

Z; = exp 1 (1)-

2. Construct an experimental semivariogram from the data ($1)4N:1 and using the
geodesic distance over G,(R") (information on the spatial autocorrelation).

3. Depending on the spatial autocorrelation, we can choose an analytic
semivariogram.

4. The weights (a,-()\)) Il.vzl for the combination over a reference tangent space so

that the variance is minimized are fully determined by the analytic
N

7 =) ai(\) Z.

i=1

semivariogram.

5. Finally, combine the data in the tangent space at a reference point and get back
on the Grassmann manifold

¢ = expg(Z7).
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Compute the experimental semi-variogram (step 2)

The semi-variogram associated with ¢ is not known in practice.
An experimental semi-variogram is built from the data (E)lgignp as follows.

First, consider the following distances in the space of parameters
m(A) = min{|[A; = M| : 1< 7 <j < N}, )
M(A) = max{||X; = Aj[ : 1 <7 <j < N}, (™
and K € N such that K- m(A) < M(A).

Then ,define h = (ho, - - - , hx41) € RKT2 where hy = k- m(A) for all k € {1,--- , K},
h() =0 and hK+]_ = M(A) .
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Algorithm to compute the experimental semi-variogram in step

2 (range and ceil)

© ® N o g b W N =

= e e
o B W N =S

=
o

17

compute m(A) = min{[|X; — Xj|| : 1 < i< j< N}
compute M(A) = max{||A; = Nj|| : 1 < i <j < N}
ho =0
for k=1to K+1do
he = k- m(A) if k < K+ 1, else hy = M(A)
Dy =0 // geodesic distances
for i=1to N do
forj=i+1to N do
if hi_y < |[Ai = Ajl| < hy then
| Add d?(log(®;), log(®;)) to the set D // geodesic d(s)
end

end
end

if Card(Dy) ;é 0 then
‘ Vg = Card(Dk) Sum(Dy)
end

end
a=hyky1 // Range
Cc = VK+1 // Ceil
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2D Numerical experience : Rotating ellipse

Non-conforming mesh

16/26



POD basis for the velocity




POD basis for the characteristic function




Reconstruction of the characteristic function
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Overview

We choose n, =30 and n, = 35
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Numerical Results : Direct POD-ROMs

Fluctuating velocity
left : HDM center : ROM1 right : ROM2
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Numerical Results : Direct POD-ROMs

Temporal coefficients for the velocity
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Numerical Results : Interpolated POD-ROMs on transient per-

iod

Parameter is the Reynolds number. Sampling : Re € (1000, 1150, 1350, 1500).
Interpolate at Re = 1250.

=0




Numerical Results : Interpolated POD-ROMs on transient per-

iod

Temporal coefficients for the velocity
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Conclusions

Contributions

e Efficient procedure to build POD-ROM for flows induced by rigid rotating
bodies.

e Introduction of the grassmannian krging interpolator.

Perspectives
e Use of rotating frame for rotor subdomain = Tearing-and-Coupling approach.
e Space/time Interpolations to avoid the resolution of the ROM.
e Extension of the proposed methods to tensor manifolds — PGD.

e Precise a priori estimation of interpolation errors.
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Thank you for your attention.
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