Interpolation of POD-ROMs for turbo-machinery by grassmannian kriging

R. Mosquera ${ }^{a}$, A. Falaize ${ }^{a}$, A. Hamdouni ${ }^{\text {a }}$, A. El Hamidi ${ }^{a}$ \& E. Liberge ${ }^{\text {a }}$ ADMOS 2019, El Campello (Alicante), SPAIN

MAY 27-29, 2019
a team M2N, LaSIE UMR CNRS 7356, University of la Rochelle, France

Context : French Research Agency project HECO

From HEating to COoling
The project : FE simulation of full scale industrial furnace/quenching tank for the prediction of thermal history of formed metal parts.
One problem : Simulation of the axial fans/agitators yields very fine mesh \Rightarrow costly operation
But we are not interested in the high fidelity description of the flow around the rotating solids
Solution replace them by reduced order models

Objective and approach

Objective

Build adaptive POD-ROM for a rigid bodies in forced rotation inside a fluid domain.

Difficulties with POD

1. moving boundaries : not compatible with spatial POD basis.
2. robustness w.r.t change of
 parameters.

Approach

1. Monolithic description of FSI and exploit the geometry ${ }^{1}$.
2. Interpolation of POD-bases by novel grassmannian kriging ${ }^{2}$.
[^0]
Multiphase MOR : Domains

Domains description

- Computational domain $\Omega=\Omega_{\mathrm{S}}(t) \cup \Omega_{\mathrm{F}}(t)$.
- Characteristic function $\chi_{\mathrm{S}}(\boldsymbol{x}, t)= \begin{cases}1 & \text { if } \boldsymbol{x} \in \Omega_{\mathrm{S}}(t) \\ 0 & \text { otherwise. }\end{cases}$

Rotation velocity

$$
\boldsymbol{u}_{\boldsymbol{\omega}}(\boldsymbol{x}, t)=\boldsymbol{\omega} \times\left(\boldsymbol{x}-\boldsymbol{x}_{\omega}\right), \quad \forall \boldsymbol{x} \in \Omega \text { and } \forall t \in \mathrm{~T}
$$

Rotation constraint

$$
\begin{equation*}
\boldsymbol{u}(\boldsymbol{x}, t)-\boldsymbol{u}_{\omega}(\boldsymbol{x}, t)=\mathbf{0}, \quad \forall \boldsymbol{x} \in \Omega_{\mathrm{S}}(t) \quad \text { and } \quad \forall t \in \mathrm{~T}, \tag{1}
\end{equation*}
$$

Consequence : no deformation of the solid domain

$$
\begin{equation*}
\mathrm{D}\left(\boldsymbol{u}_{\mathrm{S}}\right)=\nabla \cdot \boldsymbol{u}_{\mathrm{S}}=0, \quad \forall \boldsymbol{x} \in \Omega_{\mathrm{S}}(t), \forall t \in \mathrm{~T} \tag{2}
\end{equation*}
$$

Multiphase MOR : Governing equations

Navier-Stokes + solid rotation constraint

$$
\left\{\begin{aligned}
\rho\left(\frac{\partial \boldsymbol{u}}{\partial t}+\nabla \boldsymbol{u} \cdot \boldsymbol{u}\right) & =\nabla \cdot \boldsymbol{\sigma}+\boldsymbol{f}-\boldsymbol{\lambda} \\
\nabla \cdot \boldsymbol{u} & =0 \\
\chi_{\mathrm{S}}\left(\boldsymbol{u}-\boldsymbol{u}_{\omega}\right) & =0
\end{aligned}\right.
$$

$\boldsymbol{\lambda}$ is the Lagrange multiplier associated with the rotation constraint.
Boundary conditions

$$
\left\{\begin{array}{lllc}
\boldsymbol{u}_{\mathrm{F}}=\boldsymbol{u}_{\mathrm{D}} & \forall \boldsymbol{x} \in \Gamma_{\mathrm{D}}, & \forall t \in \mathrm{~T}, \quad \text { constant Dirichlet, } \\
\boldsymbol{\sigma}_{\mathrm{F}} \cdot \boldsymbol{n}=0 & \forall \boldsymbol{x} \in \Gamma_{\mathrm{N}}=\Gamma \backslash \Gamma_{\mathrm{D}}, & \forall t \in \mathrm{~T}, & \text { Outflow. }
\end{array}\right.
$$

Multiphase MOR : Numerical solution

Iterative relaxation of the solid rotation constraint ${ }^{3}$

At each time-step

Initial values $\boldsymbol{u}^{0}, p^{0}$ (e.g. from the previous time-step).
Initialize $\ell \leftarrow 0, \boldsymbol{\lambda}^{\ell} \leftarrow \mathbf{0}$
While not converge, do
Update $\ell \leftarrow \ell+1$
Solve for $\boldsymbol{u}^{\ell}, p^{\ell}$:

$$
\begin{aligned}
& \rho\left(\delta_{t} \boldsymbol{u}^{\ell}+\nabla \boldsymbol{u}^{\ell} \cdot \mathbf{u}^{\ell} \mid \boldsymbol{v}\right)-\left(\boldsymbol{f}-\chi_{\mathrm{S}} \boldsymbol{\lambda}^{\ell-1} \mid \boldsymbol{v}\right)-\left(p^{\ell} \mid \nabla \cdot \boldsymbol{v}\right)+2 \eta\left(\mathrm{D}\left(\boldsymbol{u}^{\ell}\right) \mid \mathrm{D}(\boldsymbol{v})\right)=0, \\
& \left(\nabla \cdot \boldsymbol{u}^{\ell} \mid q\right)=0
\end{aligned}
$$

Uzawa update $\boldsymbol{\lambda}^{\ell}$:
$\boldsymbol{\lambda}^{\ell} \leftarrow \boldsymbol{\lambda}^{\ell-1}+\boldsymbol{r}_{\mathrm{s}}\left(\boldsymbol{u}^{\ell}-\boldsymbol{u}_{\omega}\right)$
In the sequel, v will be chosen as the POD modes.
3. Glowinski et Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, 1989.

Standard ROM : POD of the fluctuating velocity

Ersatz

$$
\widehat{\boldsymbol{u}}_{h}\left(\boldsymbol{x}, t_{n}\right)=\overline{\boldsymbol{u}}_{h}(\boldsymbol{x})+\sum_{i=1}^{n_{u}} \boldsymbol{\phi}_{i}^{\boldsymbol{u}}(\boldsymbol{x}) a_{i}\left(t_{n}\right)
$$

with

- $\overline{\boldsymbol{u}}_{h}(\boldsymbol{x})$ the time averaged velocity,
- $\boldsymbol{\Phi}^{u}=\left(\phi_{i}^{u}(x)\right)_{1 \leq i \leq n_{u}}$ the truncated POD basis,
- $\boldsymbol{a}=\left(a_{i}(t)\right)_{1 \leq i \leq n_{u}}$ the temporal coefficients.

Remarks

- The velocity POD modes are divergence free $\nabla \cdot \phi_{i}^{u}=0,1 \leq i \leq n_{u}$ and the approximation $\widehat{\boldsymbol{u}}_{h}$ automatically satisfies the continuity equation $\nabla \cdot \widehat{\boldsymbol{u}}_{h}=0$.
- Dirichlet boundary conditions are all included in the mean field $\overline{\boldsymbol{u}}(\boldsymbol{x}) \Rightarrow$ POD modes vanish.

ROM1 : Galerkin projection of the momentum equations

Momentum equations

$$
\begin{equation*}
\mathbf{A} \cdot \frac{\mathrm{d} \boldsymbol{a}}{\mathrm{~d} t}+\mathbf{B} \cdot \boldsymbol{a}+\mathbf{C}: \boldsymbol{a} \otimes \boldsymbol{a}+\mathbf{E}^{\ell}+\mathbf{F}=\mathbf{0} \tag{3}
\end{equation*}
$$

Uzawa update

$$
\begin{equation*}
\boldsymbol{\lambda}^{\ell+1}=\boldsymbol{\lambda}^{\ell}+r \chi_{\mathrm{S}}\left(\overline{\boldsymbol{u}}+\sum_{i=1}^{n_{u}} \phi_{i}^{\boldsymbol{u}} a_{i}-\boldsymbol{u}_{\omega}\right), \tag{4}
\end{equation*}
$$

Coefficients

$$
\left\{\begin{align*}
A_{i j} & =\rho\left(\phi_{j}^{u} \mid \phi_{i}^{u}\right)\left(=\rho \delta_{i j}\right), \tag{5}\\
B_{i j} & =\rho\left(\nabla \phi_{j}^{u} \cdot \bar{u}+\nabla \bar{u} \cdot \phi_{j}^{u} \mid \phi_{i}^{u}\right)+2 \eta\left(\mathrm{D}\left(\phi_{j}^{u}\right) \mid \mathrm{D}\left(\phi_{i}^{u}\right)\right), \\
C_{i j k} & =\rho\left(\nabla \phi_{j}^{u} \cdot \phi_{k}^{u} \mid \phi_{i}^{u}\right), \\
E_{i}^{\ell} & =\left(\chi_{\mathrm{s}} \boldsymbol{\lambda}^{\ell} \mid \phi_{i}^{u}\right), \\
F_{i} & =\rho\left(\nabla \bar{u} \cdot \bar{u} \mid \phi_{i}^{u}\right)+2 \eta\left(\mathrm{D}\left(\phi_{j}^{u}\right) \mid \mathrm{D}\left(\phi_{i}^{u}\right)\right)-\left(\boldsymbol{f} \mid \phi_{i}^{u}\right) .
\end{align*}\right.
$$

Still depends on the high dimension due to projections !

Proposed ROM : POD of the characteristic function

Ersatz

$$
\widehat{\chi \mathrm{S}}(\boldsymbol{x}, t)=\overline{\chi \mathrm{s}}+\sum_{i=1}^{n_{\chi}} \phi_{i}^{\chi}(\boldsymbol{x}) c_{i}(\theta) .
$$

with

- $\overline{\chi_{\mathrm{s}}}(x)$ the angle averaged characteristic function,
- $\phi^{\chi}=\left(\phi_{i}^{\chi}(x)\right)_{1 \leq i \leq n_{\chi}}$ the truncated POD basis,
- $\boldsymbol{c}=\left(c_{i}(\theta)\right)_{1 \leq i \leq n_{\chi}}$ the angular coefficients.

Remarks

- Forced rotation of the solid domain \Rightarrow the $\theta: t \mapsto \theta(t)$ is known explicitly.
- The $\left(c_{i}(\theta)\right)_{1 \leq i \leq n_{\chi}}$ can be learned a priori (we use periodic splines).

ROM2 : Galerkin projection of the Uzawa iteration

Now, due to the iterative procedure for updating the Lagrange multiplier $\boldsymbol{\lambda}$, the reduced Lagrange multiplier $\widehat{\boldsymbol{\lambda}}^{\ell}=\left(\widehat{\lambda}_{i}^{\ell}\right)_{1 \leq i \leq n_{u}}$ can be used in place of \mathbf{E}^{ℓ} in the reduced momentum equation (3) :

Momentum equations

$$
\mathbf{A} \cdot \frac{\mathrm{d} \boldsymbol{a}}{\mathrm{~d} t}+\mathbf{B} \cdot \boldsymbol{a}+\mathbf{C}: \boldsymbol{a} \otimes \boldsymbol{a}+\hat{\lambda}^{\ell}+\mathbf{F}=\mathbf{0}
$$

Uzawa update

$$
\hat{\lambda}^{\ell+1}=\hat{\lambda}^{\ell}+r(\mathbf{G} \cdot \boldsymbol{a}+\mathbf{H} \cdot c+\mathbf{L}: c \otimes a+\mathbf{M})
$$

Coefficients

$$
\left\{\begin{aligned}
\widehat{\lambda}_{i}^{\ell} & =\left(\chi_{\mathrm{s}} \lambda^{\ell} \mid \phi_{i}^{u}\right), \\
G_{i j} & =\left(\overline{\chi_{\mathrm{s}}} \phi_{j}^{u} \mid \phi_{i}^{u}\right), \\
H_{i k} & =\left(\phi_{k}^{\chi}\left(\overline{\boldsymbol{u}}-\boldsymbol{u}_{\omega}\right) \mid \phi_{i}^{u}\right), \\
L_{i j k} & =\left(\phi_{k}^{\chi} \phi_{j}^{u} \mid \phi_{i}^{u}\right) \\
M_{i} & =\left(\overline{\chi_{\mathrm{s}}}\left(\overline{\boldsymbol{u}}-\boldsymbol{u}_{\omega}\right) \mid \phi_{i}^{u}\right)
\end{aligned}\right.
$$

Does not depend on the high dimension!

Interpolation of the reduced order models

Question

Provided a set of POD bases $\left(\Phi\left(\lambda_{i}\right)\right)_{1 \leq i \leq N}$ with ${ }^{t} \Phi\left(\lambda_{i}\right) \Phi\left(\lambda_{i}\right)=\mathrm{I}_{m}$, how to derive the POD basis for a new parameter λ without computing the full order solution ?

One solution

Interpolate the set $\left(\Phi\left(\lambda_{i}\right)\right)_{1 \leq i \leq N}$ w.r.t the $\left(\lambda_{i}\right)_{1 \leq i \leq N}$
ROM1 : Interpolate POD basis for the velocity $\boldsymbol{\Phi}^{\boldsymbol{u}}$ only,
ROM2 : Interpolate POD bases for the velocity $\Phi^{\boldsymbol{u}}$ and the characteristic function Φ^{χ} if the geometry changed

In this work, we focus on the interpolation over a set of Reynolds number (related with the solid rotation velocity), but the proposed method remains valid for multi-parameters setting.

What are the proper objects to interpolate?

POD-Galerkin ROM is independent of the choice of the POD basis

For every orthogonal matrix $A \in O(m)=\left\{B \in \mathbb{R}^{m \times m}:{ }^{T} B B=I_{m}\right\}$, we have

$$
\begin{aligned}
u_{\phi A} & =\Phi A^{T}(\phi A) u \\
& =\Phi\left(A^{T} A\right)^{T} \phi u \\
& =\Phi^{T} \Phi u \\
& =u_{\Phi}
\end{aligned}
$$

\Rightarrow Interpolate the vectorial subspaces ${ }^{4}\left(\bar{\phi}_{i}\right)_{i=1}^{N}$ engendered by the POD bases $\left(\phi_{i}\right)_{i=1}^{N}$

- Interpolate in the set of all m-dimensional vectorial subspaces of the n-dimensional euclidian space.
- This is the the Grassmann manifold $G_{m}\left(\mathbb{R}^{n}\right)$, a differential manifold of dimension $m \times(n-m)$.

4. Amsallem et Farhat, "Interpolation method for adapting reduced-order models and application to aeroelasticity", 2008.

Grassmannian Kriging

Principle

1. Each point $\bar{\phi}_{i}$ is considered as the realization of a random process $Z=\mu+\delta$ with mean μ and δ a stationary random process with values in $T_{\bar{\phi}_{r}} G_{m}\left(\mathbb{R}^{n}\right)$:

$$
Z_{i}=\exp _{\bar{\phi}_{r}}^{-1}\left(\bar{\phi}_{i}\right)
$$

2. Construct an experimental semivariogram from the data $\left(\bar{\phi}_{i}\right)_{i=1}^{N}$ and using the geodesic distance over $G_{m}\left(\mathbb{R}^{n}\right)$ (information on the spatial autocorrelation).
3. Depending on the spatial autocorrelation, we can choose an analytic semivariogram.
4. The weights $\left(\alpha_{i}(\lambda)\right)_{i=1}^{N}$ for the combination over a reference tangent space so that the variance is minimized are fully determined by the analytic semivariogram.

$$
Z^{\star}=\sum_{i=1}^{N} \alpha_{i}\left(\lambda^{\star}\right) Z_{i}
$$

5. Finally, combine the data in the tangent space at a reference point and get back on the Grassmann manifold

$$
\bar{\phi}^{\star}=\exp _{\bar{\Phi}_{r}}\left(Z^{\star}\right)
$$

Compute the experimental semi-variogram (step 2)

The semi-variogram associated with δ is not known in practice.
An experimental semi-variogram is built from the data $\left(\bar{\Phi}_{i}\right)_{1 \leq i \leq n_{p}}$ as follows.
First, consider the following distances in the space of parameters

$$
\begin{align*}
m(\Lambda) & =\min \left\{\left\|\lambda_{i}-\lambda_{j}\right\|: 1 \leq i<j \leq N\right\} \tag{6}\\
M(\Lambda) & =\max \left\{\left\|\lambda_{i}-\lambda_{j}\right\|: 1 \leq i<j \leq N\right\} \tag{7}
\end{align*}
$$

and $K \in \mathbb{N}$ such that $K \cdot m(\Lambda)<M(\Lambda)$.
Then ,define $h=\left(h_{0}, \cdots, h_{K+1}\right) \in \mathbb{R}^{K+2}$ where $h_{k}=k \cdot m(\Lambda)$ for all $k \in\{1, \cdots, K\}$, $h_{0}=0$ and $h_{K+1}=M(\Lambda)$.

Algorithm to compute the experimental semi-variogram in step 2 (range and ceil)

```
compute \(m(\Lambda)=\min \left\{\left\|\lambda_{i}-\lambda_{j}\right\|: 1 \leq i<j \leq N\right\}\)
compute \(M(\Lambda)=\max \left\{\left\|\lambda_{i}-\lambda_{j}\right\|: 1 \leq i<j \leq N\right\}\)
    \(h_{0}=0\)
    for \(k=1\) to \(K+1\) do
    \(h_{k}=k \cdot m(\Lambda)\) if \(k<K+1\), else \(h_{k}=M(\Lambda)\)
    \(D_{k}=\emptyset \quad / /\) geodesic distances
    for \(i=1\) to \(N\) do
    for \(\underline{j=i+1}\) to \(N\) do
                if \(h_{k-1}<\left\|\lambda_{i}-\lambda_{j}\right\| \leq h_{k}\) then
                        Add \(\widehat{d}^{2}\left(\widehat{\log }\left(\Phi_{i}\right), \widehat{\log }\left(\Phi_{j}\right)\right)\) to the set \(D_{k} \quad / /\) geodesic \(d(\bullet)\)
                        end
            end
        end
        if \(\underline{\operatorname{Card}\left(D_{k}\right) \neq 0}\) then
            \(\widetilde{v}_{k}=\frac{1}{\operatorname{Card}\left(D_{k}\right)} \operatorname{Sum}\left(D_{k}\right)\)
        end
    end
\(18 a=h_{K+1} \quad / /\) Range
\(19 \quad c=\widetilde{v}_{K+1} \quad / /\) Ceil
```


2D Numerical experience : Rotating ellipse

Non-conforming mesh

POD basis for the velocity

POD basis for the characteristic function

Reconstruction of the characteristic function

Overview

We choose $n_{\boldsymbol{u}}=30$ and $n_{\chi}=35$

Error $E(t)=\frac{\|\boldsymbol{u}(t)-\widehat{\boldsymbol{u}}(t)\|_{2}}{\|\boldsymbol{u}(t)\|_{2}}$
Time-saving
HDM $\simeq 7 \mathrm{~h}$,
ROM1 $\simeq 20 \mathrm{~min}$,
ROM2 $\simeq 1 \mathrm{~min}$.

Numerical Results : Direct POD-ROMs

Fluctuating velocity

left : HDM

center: ROM1
right : ROM2

Vorticity

Numerical Results : Direct POD-ROMs

Temporal coefficients for the velocity

Numerical Results : Interpolated POD-ROMs on transient period

Parameter is the Reynolds number. Sampling : $\operatorname{Re} \in(1000,1150,1350,1500)$. Interpolate at $\mathrm{Re}=1250$.

Numerical Results : Interpolated POD-ROMs on transient period

Temporal coefficients for the velocity

Conclusions

Contributions

- Efficient procedure to build POD-ROM for flows induced by rigid rotating bodies.
- Introduction of the grassmannian krging interpolator.

Perspectives

- Use of rotating frame for rotor subdomain \Rightarrow Tearing-and-Coupling approach.
- Space/time Interpolations to avoid the resolution of the ROM.
- Extension of the proposed methods to tensor manifolds \rightarrow PGD.
- Precise a priori estimation of interpolation errors.

Thank you for your attention.

[^0]: 1. Falaize, Liberge et Hamdouni, "POD-based reduced order model for flows induced by rigid solids in forced rotation", 2019.
 2. Mosquera, "Interpolation sur les variétés grassmanniennes et applications la réduction de modles en
