
Packaging Python Code:
an introduction

Muzzamil LUQMAN (L3i) and Antoine FALAIZE (LaSIE)

LaSIE Seminar
23/11/2017
Université de La Rochelle

Recall a module is a single file (or files) that are imported under one import

import my_module

A package is a collection of modules in directories that give a package hierarchy

from my_package.timing import afunction

But, a “Python package” can refer to the distribution sources as well (confusion)

What is a Python package

Why packaging your Python code?
● To import a module (or a package), it must be in your Python path
● Without a package structure, you need

○ to copy all your modules in the current working directory or
○ to append the path to your modules in the Python path

import sys

sys.path.append(‘/path/to/my/modules’)

● With a package structure, you can
○ let all you code in a single directory (e.g. a GIT repository!)
○ use setuptools to install globally and import your modules from any location
○ distribute your work through PyPI so that it installs with pip

Why publishing your code on PyPI ?
from the website:

The Python Package Index is a repository of software for the Python programming
language. There are currently 122544 packages here.

● A package uploaded on PyPI can be installed easily on every platforms
● This gives visibility and accessibility to your work!

https://pypi.python.org/pypi

Requirements
1. some Python code

○ obviously

2. setuptools: To install your package locally
○ Usually available in Python distributions

3. Pip: To easily install packages and to connect to PyPI
○ Usually available in Python distributions

4. A PyPI account
○ To upload your package to PyPI

5. Twine: To securely push your code to PyPI
○ install with pip install twine

https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi
http://twinery.org/

1. Make a package
Suppose you have some code in a folder:

Simply add an empty python script

__init__.py

Details on what to put in this script

bunch of
python
scripts

a python
package

http://mikegrouchy.com/blog/2012/05/be-pythonic-__init__py.html

2. Make a package installable
1. Rebase your package in a project_directory
2. Add a setup.py

○ to configure the installation
3. Add a setup.cfg

○ to configure the build of sources
4. add a README.rst

○ to explain why/how to use your package
5. add a MANIFEST.in

○ to distribute additional material
6. add a LICENCE.txt

○ to explain what can be done with your package
○ we use the French Academic Licence CeCILL

7. add AUTHORS, CHANGELOG, and requirement.txt files (optional)

https://packaging.python.org/tutorials/distributing-packages/#setup-py
https://packaging.python.org/tutorials/distributing-packages/#setup-cfg
https://packaging.python.org/tutorials/distributing-packages/#readme-rst
https://packaging.python.org/tutorials/distributing-packages/#manifest-in
https://packaging.python.org/tutorials/distributing-packages/#license-txt

2. Make a package installable
● Now you can install your package globally with

pip install .

● To allow further editing of the code, use

pip install -e .

(both from the project_directory)

Details on packages installation

https://packaging.python.org/tutorials/installing-packages/#installing-requirements

3. Prepare the distribution sources
To have your project installable from a Package Index like PyPI, you’ll need to
create a Distribution (aka “Package”) for your project.

This is done with

python setup.py sdist

This build the sources in the project_directory

Details on sources building (this is the real packaging)

https://packaging.python.org/tutorials/distributing-packages/#packaging-your-project

4. Push your Package to PyPI
If all the preceding succeed, you are now ready to push your code to PyPI.

Simply run (still from the project_directory)

twine upload dist/*

And that’s all!

Now anyone can install your project from anywhere with

pip install your_project

Details on uploading sources

https://packaging.python.org/tutorials/distributing-packages/#upload-your-distributions

Further documentation
About Python packages installation:

Installing Packages

About distributing on PyPI

Packaging and Distributing Projects

https://packaging.python.org/tutorials/installing-packages/#installing-requirements
https://packaging.python.org/tutorials/distributing-packages/#initial-files

