

A generic passive-guaranteed structure for elastoplatic friction models

Antoine Falaize ${ }^{1}$ and David Roze ${ }^{2}$
${ }^{1}$ LASIE, Université de La Rochelle
${ }^{2}$ STMS laboratory, CNRS-IRCAM-Sorbonne Université, Paris

OnLine, February 16-19, 2021

Context: Sound synthesis

Bowed string dynamics: Nonlinear dynamical system with self-oscillations due to an alternance between stick and slip phases ${ }^{1}$.

Source: https://www.youtube.com/watch?v=6JeyiM0YNo4 (ViolinB0W)
${ }^{1}$ Willemsen, S., Bilbao, S., Serafin, S. (2019). Real-time implementation of an elasto-plastic friction model applied to stiff strings using finite-difference schemes. 22nd International Conference on Digital Audio2 Effects.

Problem Statement

Aims

- Sound synthesis of a resonator with nonlinear interaction
- Ensure power balance and therefore computation stability
Framework: Port Hamiltonian Systems (PHS)
- PHS formulation
- Modularity: inteconnexion of several PHS is a PHS
- Passive guaranteed simulation (stability)

Port Hamiltonian Systems

Friction models

Application to a bowed string

- Energy storing components:
(energy) $E=\sum_{n=1}^{N} e_{n} \geq 0$

- Energy storing components:

$$
E=\sum_{n=1}^{N} e_{n} \geq 0
$$

- Dissipative components: (dissipated power) $P_{D}=\sum_{m=1}^{M} d_{m} \geq 0$

Port-Hamiltonian Systems

- Energy storing components: (energy) $E=\sum_{n=1}^{N} e_{n} \geq 0$
- Dissipative components: (dissipated power) $P_{D}=\sum_{m=1}^{M} d_{m} \geq 0$
- External sources:
(external power)

Port-Hamiltonian Systems

- Energy storing components: $E=\sum_{n=1}^{N} e_{n} \geq 0$
- Dissipative components: (dissipated power) $P_{D}=\sum_{m=1}^{M} d_{m} \geq 0$
- External sources:
(external power)
$P_{\text {ext }}=\sum_{p=1}^{P} s_{p}$
- Conservatives connections (power balance) $\frac{d E}{d t}=-P_{D}+P_{\text {ext }}$

Port-Hamiltonian Systems

- Energy storing components:

$$
E=H(x)=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0
$$

- Dissipative components: (dissipated power) $P_{D}=\mathrm{z}(\mathrm{w})^{\top} \mathrm{w}=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$ (effort \times flow: force \times velocity, tension \times current, etc)
- External sources: (external power) $P_{\text {ext }}=u^{T} \mathrm{y}=\sum_{p=1}^{P} u_{p} y_{p}$
- Conservatives connections (power balance) $0=\nabla H(x)^{T} \frac{d x}{d t}+z(w)^{T} \cdot w-u^{T} \cdot y$

Port-Hamiltonian Systems

- Energy storing components:
(energy)

$$
E=H(x)=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0
$$

- Dissipative components: (dissipated power) $P_{D}=z(w)^{\top} w=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$ (effort \times flow: force \times velocity, tension \times current, etc)
- External sources: (external power)

$$
P_{\mathrm{ext}}=\mathrm{u}^{T} \mathrm{y}=\sum_{p=1}^{P} u_{p} y_{p}
$$

- Conservatives connections (power balance) $0=\nabla H(x)^{T} \frac{d x}{d t}+z(w)^{\top} \cdot w-u^{T} \cdot y$

Power balance

Port-Hamiltonian Systems

Port Hamiltonian Formulation

$$
\underbrace{\left(\frac{\frac{d x}{d t}}{\mathrm{w}}\right.}_{B})=S \cdot \underbrace{\left(\frac{\nabla H(\mathrm{x})}{\mathrm{z}(\mathrm{w})}\right.}_{A} \mathrm{u}), ~
$$

- Energy storing components:
(energy)
- Dissipative components: (dissipated power)
$P_{D}=\mathrm{z}(\mathrm{w})^{\top} \mathrm{w}=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$
(effort \times flow: force \times velocity, tension \times current, etc)
- External sources:
(external power)
$P_{\text {ext }}=u^{T} y=\sum_{p=1}^{P} u_{p} y_{p}$
- Conservatives connections (power balance) $0=\nabla H(x)^{T} \frac{d x}{d t}+z(w)^{T} \cdot w-u^{T} \cdot y$

Power balance

$$
\begin{aligned}
0 & =A^{T} B \\
& =A^{T} S A \\
\text { if } S & =-S^{T}
\end{aligned}
$$

Linear string model ${ }^{2}$

$$
\left(\begin{array}{c}
\frac{\partial q}{\partial t}(\xi, t) \\
\frac{\partial v}{\partial t}(\xi, t) \\
\hline w_{\mathrm{s}}(\xi, t) \\
\hline y_{\mathrm{s}}(\xi, t)
\end{array}\right)=\left(\begin{array}{cc|c|c}
0 & \frac{1}{\mu} \frac{\partial}{\partial \xi} & 0 & 0 \\
\frac{1}{\mu} \frac{\partial}{\partial \xi} & 0 & \frac{-1}{\mu} & \frac{-1}{\mu} \\
\hline 0 & \frac{1}{\mu} & 0 & 0 \\
\hline 0 & \frac{1}{\mu} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\frac{\partial \mathrm{H}_{\mathrm{s}}}{\partial q}(q(\xi, t), v(\xi, t)) \\
\frac{\partial \mathrm{H}_{\mathrm{s}}}{\partial v}(q(\xi, t), v(\xi, t)) \\
z_{\mathrm{s}}\left(w_{\mathrm{s}}(\xi, t)\right) \\
u_{\mathrm{s}}(\xi, t)
\end{array}\right)
$$

with

- For the storing components: $\frac{\partial \mathrm{H}_{\mathrm{s}}}{\partial q}=T_{0} q$ and $\frac{\partial \mathrm{H}_{\mathrm{s}}}{\partial \mathrm{v}}=\mu \mathrm{v}$
- For the dissipating components: $w_{\mathrm{s}}=v$ and $z_{\mathrm{s}}\left(w_{\mathrm{s}}(\xi, t)\right)=a v$
- For the power source: $u_{\mathrm{s}}(\xi, t)=-f(\xi, t)$ and $y_{\mathrm{s}}(\xi, t)=v(\xi, t)$

[^0]

Friction model with two external ports
Control port with imposed velocity v_{c} and $f_{i \rightarrow c}$ the force exerted by the interaction. Interaction port with string velocity v_{s} and $f_{i \rightarrow s}$ the force exerted on the string. Power emitted thought the ports: $u^{\top} y=f_{i \rightarrow s} v_{s}+f_{i \rightarrow c} v_{c}$.

Friction model

The interaction forces depend on the relative velocity $v_{\mathrm{rel}}=v_{\mathrm{c}}-v_{\mathrm{s}}$.

Elastoplastic friction model

The relative velocity is decomposed as $v_{\text {rel }}=v_{\mathrm{e}}+v_{\mathrm{p}}$ with:

- Internal elastic state x_{e} associated with velocity $v_{\mathrm{e}}=\dot{x}_{\mathrm{e}}$ and potential energy $h_{\mathrm{e}}\left(x_{\mathrm{e}}\right)=\frac{k_{\mathrm{e}} x_{\mathrm{e}}^{2}}{2} \rightarrow$ storing component (reversible)
- Plastic behavior with associated velocity $v_{\mathrm{p}} \rightarrow$ dissipative component (irreversible)
- Includes a compliance damping σ_{c} and a fluid damping σ_{f}.
- Is given as an implicit relation

$$
\left\{\begin{array}{l}
f_{i \rightarrow s}=k_{e} x_{e}+\sigma_{c} \frac{\mathrm{~d} x_{e}}{\mathrm{~d} t}+\sigma_{f} v_{r e l} \tag{1}\\
\frac{\mathrm{~d} x_{e}}{\mathrm{~d} t}=v_{r e l}\left(1-\frac{\left|v_{r e l}\right| \alpha\left(x_{e}, w_{r e l}\right) k_{e}}{v_{r e l} f_{s s}\left(v_{r e l}\right)} x_{e}\right)
\end{array}\right.
$$

where the steady state friction force (Stribeck curve) is defined by:

$$
\begin{equation*}
f_{\mathrm{ss}}\left(v_{\mathrm{rel}}\right)=\frac{1}{k_{\mathrm{e}}}\left(f_{C}+\left(f_{\mathrm{S}}-f_{C}\right) \exp \left(-\left(\frac{v_{\mathrm{rel}}}{v_{\mathrm{S}}}\right)^{2}\right)\right) \tag{2}
\end{equation*}
$$

and $\alpha\left(x_{\mathrm{e}}, v_{\text {rel }}\right) \in(0,1)$ is an adhesion map (shown next slide).

[^1]
Adhesion map

Dissipation relative to the plastic behaviour:

$$
\begin{align*}
& \alpha\left(x_{\mathrm{e}}, v_{\mathrm{rel}}\right)=\left\{\begin{array}{r}
0 \\
0 \\
0 \\
\text { if } \\
\widehat{\alpha}\left(x_{\mathrm{e}}, v_{\mathrm{rel}}\right) \\
1 \\
1
\end{array}\right. \\
& \boldsymbol{\operatorname { s i g n }}\left(x_{\mathrm{e}}\right) \neq \boldsymbol{\operatorname { s i g n }}\left(v_{\text {rel }}\right), \\
& \boldsymbol{\operatorname { s i g n }}\left(x_{\mathrm{e}}\right)=\boldsymbol{\operatorname { s i g n }}\left(v_{\text {rel }}\right), \quad\left|x_{\mathrm{e}}\right| \leq x_{\text {ba }}, \\
& \boldsymbol{\operatorname { s i g n }}\left(x_{\mathrm{e}}\right)=\boldsymbol{\operatorname { s i g n }}\left(v_{\text {rel }}\right), \quad x_{\mathrm{ba}}<\left|x_{\mathrm{e}}\right|<x_{\mathrm{ss}}\left(v_{\text {rel }}\right), \\
& \operatorname{sign}\left(x_{\mathrm{e}}\right)=\operatorname{sign}\left(v_{\mathrm{rel}}\right), \quad x_{\mathrm{SS}}\left(w_{\text {rel }}\right) \leq\left|x_{\mathrm{e}}\right|, \tag{3}
\end{align*}
$$

$$
\begin{equation*}
\widehat{\alpha}\left(x_{\mathrm{e}}, v_{\mathrm{rel}}\right)=\frac{1}{2}\left(1+\sin \left(\pi \frac{\left|x_{\mathrm{e}}\right|-\left(\frac{x_{\mathrm{ss}}\left(v_{\mathrm{rel}}\right)+x_{\mathrm{ba}}}{2}\right)}{x_{\mathrm{SS}}\left(v_{\mathrm{rel}}\right)-x_{\mathrm{ba}}}\right)\right) . \tag{4}
\end{equation*}
$$

\square

PHS Formulation

Choosing the dissipation variables

$$
\begin{aligned}
& w_{\mathrm{rel}}=v_{\mathrm{rel}} \\
&=\dot{x}_{\mathrm{e}}+v_{\mathrm{p}} \\
& w_{\mathrm{p}}=k_{\mathrm{e}} x_{\mathrm{e}}
\end{aligned}=h_{\mathrm{e}}^{\prime}\left(x_{\mathrm{e}}\right), ~ \$ ~ \$
$$

the Dupont model of friction reads:

$$
\left\{\begin{array}{l}
f_{i \rightarrow s}=k_{\mathrm{e}} x_{\mathrm{e}}+\left(\sigma_{\mathrm{c}}+\sigma_{\mathrm{f}}\right) w_{\mathrm{rel}}-\sigma_{\mathrm{c}} r_{\mathrm{Lu}}\left(w_{\mathrm{rel}}\right) w_{\mathrm{p}} \tag{5}\\
\frac{\mathrm{~d} x_{e}}{\mathrm{~d} t}=v_{\mathrm{rel}}-r_{\mathrm{Du}}\left(x_{e}, w_{\mathrm{rel}}\right) w_{\mathrm{p}}
\end{array}\right.
$$

where $r_{D u}\left(x_{e}, w_{r e l}\right) \triangleq \alpha\left(x_{e}, w_{r e l}\right) \frac{\left|w_{r e l}\right|}{f_{s s}\left(w_{r e l}\right)}>0$.

The PHS formulation of the Dupont model of friction is then

$$
\left(\begin{array}{c}
\frac{\mathrm{d} x_{\mathrm{e}}}{\mathrm{~d} t} \tag{6}\\
\hline w_{\mathrm{rel}} \\
w_{\mathrm{p}} \\
\hline f_{\mathrm{i} \rightarrow \mathrm{~s}} \\
f_{\mathrm{i} \rightarrow \mathrm{c}}
\end{array}\right)=\left(\begin{array}{r|rr|rr}
0 & 0 & -1 & -1 & +1 \\
\hline 0 & 0 & 0 & -1 & +1 \\
+1 & 0 & 0 & 0 & 0 \\
\hline+1 & +1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\frac{h_{\mathrm{e}}^{\prime}\left(x_{\mathrm{e}}\right)}{z_{\mathrm{rel}}\left(w_{\mathrm{rel}}, w_{\mathrm{p}} ; x_{\mathrm{e}}\right)} \\
z_{\mathrm{p}}\left(w_{\text {rel }}, w_{\mathrm{p}} ; x_{\mathrm{e}}\right) \\
\hline v_{\mathrm{s}} \\
v_{\mathrm{c}}
\end{array}\right),
$$

with dissipation variables $\mathrm{w}=\left(w_{\mathrm{rel}}, w_{\mathrm{p}}\right)^{\top}$, dissipation function $\mathrm{z}\left(\mathrm{w} ; x_{\mathrm{e}}\right)=R\left(\mathrm{w} ; \mathrm{x}_{\mathrm{e}}\right) \mathrm{w}$ where

$$
R\left(\mathrm{w} ; x_{\mathrm{e}}\right)=\left(\begin{array}{cc}
\sigma_{c}+\sigma_{f} & -\sigma_{c} r_{D u}\left(x_{e}, w_{r e l}\right) \\
0 & r_{D u}\left(x_{e}, w_{r e l}\right)
\end{array}\right) \succeq 0 .
$$

Remark: (i) the dissipated power is $w^{\top} z\left(w ; x_{e}\right) \geq 0, \forall x_{e}$. (ii) Generic model (Dalh for ..., Lugre for ...)

The finite dimensional model used for the simulations is obtained by

1. Projecting the PHS of the string on the modal basis $e_{k}(\xi)=\sqrt{\frac{2}{L}} \sin \left(\frac{\kappa \pi \xi}{L}\right)$,
2. Connecting the ouptput of the string (velocity) to the input of the interaction model and the output of the interaction model (force) to the input of the string.

where $E^{T}(\xi)=\left(e_{1}(\xi) e_{2}(\xi) \ldots e_{K}(\xi)\right)$ and ξ_{B} denotes the position of the bow along the string.

Time discretisation

(i) Time derivative \rightarrow Euler explicit

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}(t) \approx \frac{x(k+1)-x(k)}{T}=\frac{\delta x}{T}
$$

where T is the discrete time step.
(ii) Gradient $\nabla H(x) \rightarrow$ the discrete gradient ${ }^{4}$

$$
\nabla_{d} H(x, x+\delta x)=\frac{H(x+\delta x)-H(x)}{\delta x} \frac{\delta x}{T}
$$

In the case of a linear system (quadratic hamiltonian: $H=\frac{1}{2} x^{\top} Q x$), this is:

$$
\nabla_{d} H(x, x+\delta x)=\mathrm{Q}\left(x(k)+\frac{\delta x(k)}{2}\right) .
$$

[^2]
Sound synthesis results

Figure: Displacement of the string at the interaction point for differents bowing points.

Sound synthesis results

(a) Power balance $\left(\frac{H\left(x\left(t_{n+1}\right)-x\left(t_{n}\right)\right.}{T}+P_{D}-P_{\text {ext }}\right)$

(b) Energies

Figure: Power balance is preserved as it can be seen in the first column which present the difference signal between the variation of the Hamiltonian and the power damped minus the power of the sources.

Sound synthesis results

(a) $\xi_{B}=L / 4$

(b) $\xi_{B}=L / 2$

Figure: Interaction force as a function of the relative velocity: the stick-slip motion is visible.

Conclusion

Results

- Generic interaction model (collisions, friction) in the PHS formalism
- Coupling resolution in the PHS model
- Passive-guaranteed numerical simulation
- Self-oscillations emergence depends on several physical and interaction parameters (bowing point, velocity and force of the bow)

Perspectives

- Application to nonlinear resonators (e.g. string or plates in large deformations)
- Optimisation of numerical schemes and code with an aim for real-time synthesis

[^0]: ${ }^{2}$ Villegas J.A., A port-Hamiltonian approach to distributed paremeter systems, PhD thesis, University of Twente, 2007.

[^1]: ${ }^{3}$ Dupont, P., Hayward, V., Armstrong, B., Altpeter, F. (2002). Single state elastoplastic friction models 2 IEEE Transactions on automatic control, 47(5), 787-792.

[^2]: ${ }^{4}$ T. Itoh, K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, Journal of Computational Physics 76 (1)(1988) 85-102

