ircam
’”” = Centre UP mC
aSIE La Rochelle Pumpldﬂu 1881 SORBONNE

o PyPHS: An open source Python library dedicated
to the generation of passive guaranteed simulation code

for multiphysical (audio) systems

Antoine Falaize?

IRCAM seminar - Research and Technology
04/12/2017

2 Postdoc in the team M2N, LaSIE UMR CNRS 7356, ULR, La Rochelle, France

1/47



Objective : Numerical simulation of multiphysical systems

e electronics, mechanics, magnetics, thermics.
e nonlinearities, non ideal behaviors.

e high complexity.

Standard approachs

1. Build a set of elementary physical models.
2. Build a system as the connection of these models.
3. Apply ad-hoc discretization methods.

Difficulties

D1 The stability of a single model simulation is not guaranteed.

D2 This is even worst for the interconnected system.

1e2

Xo

time t (s) fe=2
2/47



But physical systems are passive systems

Internal
Power
Dissipation

Internal
Energy
Storage

External
Power
Sink

Power-balance

dE
dt

+ Pp + = 0

with

e Energy £ (J),
e Dissipated power (W),
e Sink Power (W).

3/47



Our approach

1. Structure physical models according to energy flows

2. Build a system as the structure preserving connection of these models
3. Apply a structure preserving discretization method

Result

D1 The stability of a single model simulation is guaranteed.

D2 The interconnected system inherits from this property.

time t (s) le2

4/47



Encoding of passivity in PyPHS

Multi-physical system Comp()m:nts Network

- e
/ o o)\ e
(} —

NN
W

ot -
Storage

Conservative

Porc-Hamiltonian System (PHS) interconnection

Ports
Structure Dissipation
preserving
numerical Dirac structure [0

method

Discrere PHS

5/47



PyPHS : everything is formal

Networks are formal graph structures

e Use of NETWORKX ! Python package.

e Creation and manipulation of graphs structures.

Model equations in symbolic form

e Use of SymPy 2 Python package.
e A posteriori manipulation of system'’s equations.

e Automated generation of IATEX documentation.

Numerical method is derived formally

e Also use SYMPY Python package.
e Symbolic optimization of the update equations.

e Easy analysis of the signal flow — Code generation.

1. see https://networkx.github.io/
2. see http://www.sympy.org/en/index.html
6/47


https://networkx.github.io/
http://www.sympy.org/en/index.html

PyPHS background

Main tools

e Port-Hamiltonian Systems (PHS) formalism 3

e Graph theory4

2012—2016

e ANR project HaMecMoPSys>.
e PhD thesis of Antoine Falaize® in the team S3AM 7 at IRCAM - UMR STMS 9912 founded by EDITE.

2016— - --

e Implementation of the scientific results obtained between 2012 and 2016.

e Further scientific developments.

3. MASCHKE, VAN DER SCHAFT et BREEDVELD, “An intrinsic Hamiltonian formulation of network dynamics :
Non-standard Poisson structures and gyrators”, 1992.
4. Dpsorr et Kt H, Basic circuit theory, 2009.

5. see https://hamecmopsys.ens2m.fr/

6. FALAIZE, “"Modélisation, simulation, génération de code et correction de systemes multi-physiques audios :
Approche par réseau de composants et formulation Hamiltonienne a Ports”, 2016.

7. seehttp://s3am.ircam.fr/?lang=en 7/47


https://hamecmopsys.ens2m.fr/
http://s3am.ircam.fr/?lang=en

Table of contents

1. Network
PyPHS inputs : Graph and Netlist.

2. Components
PyPHS dictionary elements : Graph objects.

3. Port-Hamiltonian Systems

PyPHS Core object : Passive-guaranteed structure.

4. Numerical Method

PyPHS Method object : Structure preserving numerical scheme.

5. Code generation
PyPHS outputs : PyTaon, C++, JUuCE and FAUST.

8/47



Network

RN



System representation paradigm : Power graphs

Directed graphs with self loops

e Set of nodes N = {Ny,--- ,N,} .
e Set of edges B = {By, - ,B,} with B; = (n,m) € N°.
e Direction : Bi=n—m

efforte =e,—€,
e vee

flow f

Receiver convention

e Each edge = two power variables : Flow and Effort
e Flow f : defined through the edges.

e Effort ¢ : defined across the edges as the difference of two quantities.
e Power received by the edge : P = f¢ (W).

Connection = Nodes identification

13
+ =
® ® @ ®

10/47



Electrical graphs

Physical quantities

voltage =v,—Vv,
Flow = Current (A), Effort = Voltage (V), ¢ = Potential (V) T

current

E I t
xample system Nodes

® O @

Vit
2 Capacitors C1 and C2, @
2 Resistors R1 and R2, Graph nodes = Circuit nodes Graph edges = Circuit
1 BJ transistor Q, Ground = Reference node # components
3 Ports Vi, Vo and Vc. Note Q = 2 edges

11/47



Mechanical graphs

Physical quantities

velocity =v,
Flow = Force (N), Effort = Velocity (m/s), e = point velocity (m/s) ~®:==

O—0O

arce

Example system

Nodes

B : Graph nodes = unique velocities %@
2 Masses M1 and M2, Reference velocity = node #
2 Springs K1 and K2, Graph edges = components
1 Damper,
1 Port F.

12/47



Mechanical graphs (dual)

Physical quantities

Flow = Velocity (m/s), Effort = force (N), ¢ = some force (N)

velocity

Example system
Edges Graph

2 Masses M1 and M2,
2 Springs K1 and K2,
1 Damper,

1 Port F.

Serial edges = same velocity Add nodes to close the graph

13/47



Magnetical graphs

mmf- k h,;

Physical quantities o
H

flux variation
Flow = flux variation (V), Effort = magnetomotive force (A), ¢ = some mmf (A)

Example system

P2

3 metal pieces P1, P2, P3, P3
1 Air gap G,

1 Flux leakage L,

1 Port M (magnet).

Add nodes to close the graph

Serial = same magnetic flux

14/47



Thermal graphs

Physical quantities

temperature

entropy variation

Lty

Flow = entropy variation (W/K), Effort = temperature (K), ¢ = temperature (K)

Example system

2 Heat capacities T1 and T2,
1 Heat transfer R,

Nodes
@) ®

Graph

® ®

Graph edges = components
Note R = 2 edges (irreversibility)

Graph nodes = temperatures
Reference temperature = node #

15/47



Multiphysical graphs : connectors

Transformer
N1 N3 1
o €354 = o €1—-2,
s = —afisg,
— [’(34»4]
(0] = .
N2 N4 [ ] [fl~>2]
Gyrator
N1 N3
“ &84 = afio,
fina = —Ze,o,
_ [e34]
[0} = .
N [o] [fA—2]

Conserving connection

In each case : P34 = —P1_,»

16/47



Kirchhoff laws on graphs

Incidence Matrix

1 if edge b is ingoing node n,
[r]n,b =

Example : RLC —1 if edge b is outgoing node n.

R L c BR  BL Bc B
Gw 0 0 41 -1\ #
° r— -1 0 0 +1| N
+1 -1 0 0] N»
0 +1 -1 0/ N3

~

Reduced incidence Matrix

Arbitrary reference node # Generalized Kirchhoff’s laws
B Bng
/ Yo \ # o Efforts e € R™, flows f € R"™.
N e Node quantities p € R™.
= L e vTp=c¢, (KVL).
K : o 7f=0, (KCL).

N, 17/47



Dirac structure

= Kirchhoff laws on graphs

Edges splitting
Depends on the components
Flow controlled | — edge — .

Effort controlled ¢ — edge — §.
Outputs a € R"™.
Inputs b € R™,

Realizability criterion

If 75 is invertible, then 3!J s.t.
b=1J:a.

Dirac structure

L =11 pandca=1]

2. ’Yefﬂ =5 fb!
-1
30 Ve =5 Ve

RLC example

By is e-controlled, Bg, B¢, B, are f-controlled.

BL | BR Bc By
/ 0 0 +1 -1\ No
Yo - 0| -1 0 41| Ny
+1] 0o -1 0o/ n3
€p _ 0 'YIf fa
fo ey 0 €p
—_—— N——— e —

b J a
J is skew-symmetric = aT-b=aT-J.-a=0.

This is the Tellegen’s theorem :

S oo = 30 Po— 0.

18/47



PyPHS realizability analysis

Automated construction of the Dirac structure
Algorithme 8

Data A netlist and a dictionary of components.

Résult e If realizable :
1. partition B = [B., Bj],
2. structure b = J - a.

e Else : Realizability fault detection — the user correct the
netlist.

8. FaLamze et HELIE, “Passive guaranteed simulation of analog audio circuits : A port-Hamiltonian approach”,

2016.

19/47



Components

5@ 6N



(definitions)

Constitutive relation for component s

Storage function (Hamiltonian) I1. of the state x..

Stored energy E(t) = Hs(xs(t)) >

. dEs dx
Received power <= = H.(xs) 5=

1E
Power variables for component s “'
Received power "{t* = ¢s fs. @
C <1 N,
e-controlled ¢ = dr = fs = 1L (x.).
D:E+Py+Ps=0

f-controlled s = ‘IXS = es = H](xs).

Total energy stored in n storage edges

o x= (X1, ,Xng)-

o BE=H(x)=> " Hixs)>0.
(l]: d _ n dHs dxs

° = VHT & = Zsil dxs dt -

21/47



(examples)

Mass (flow=velocity, effort=force)

State
Hamiltonian

Flow

Effort

Capacitor

State
Hamiltonian

Flow
Effort

momentum x,, =— m Vy,.

2
X/W

kinetic energy 1, (xn) = 5.

mass velocity fr, = H/ (%)

dxm

inertial force e,, =

charge q¢.
electrostatic energy ¢ (xc) =
__ dx¢c __ dqc
current fc =~ ol
X
voltage ec = I1-(xc) = *£.

Xm

m*

— mdvm
ac — M -

2
Xc
2C"

22/47



Dissipative components (definitions)

Constitutive relation for component

Dissipation function of the variable

Received (dissipated) power >0.

Power variables for component y

Received power eqgfg >0 '
e-controlled ¢, = = jq = . _@_
f-controlled f, = — ¢y = .

D:G+FPo+Ps=0

Total power dissipated in dissipative

edges
L]

L]
o = = >0

23/47



Dissipative components (examples)

Dashpot (flow=force, effort=velocity)

Variable
Function
Flow

Effort

Resistor

Variable
Function
Flow

Effort

elongation velocity

resistance force , with D > 0.
force fp = =D vp.

velocity ep = = vp.

Dissipated Power =fpep =R v%

current

resistance voltage , with R > 0.
current fp =

velocity ep =

Dissipated Power =freg = Ri3

24/47



Ports (definitions)

Input and output on port
Actuated quantity v (input) and Observed quantity

goutput ).

Received Power

The power is the power that goes out
of the system on port p. dE
Ports are power sink. '
Power variables for port e ‘
<1 | N
Received power Fsp(t) =epfp D 4Pyt Pi=0
e-controlled ¢, = y, = j, = 1, (flow source).
f-controlled f, = y, = ¢, = 1, (effort source).

Total power on port edges

25/47



Ports (examples)

Voltage source

Input voltage
Qutput current

Flow current fiy =

Effort voltage ey =

Received Power = fyey = vyiy.

Imposed force (flow=force, effort=velocity)

Input force
Qutput velocity

Flow force fiy =

Effort velocity ey =

Received Power = fyey = fyvy.

26/47



PyPHS Dictionary (v0.2)

e Mechanics (1D) : masses, springs lin./nonlin. (cubic, saturating, etc.),
-elastic (fractional derivatives).

e Electronics : , coils and lin./nonlin. capacitors, , ,
,
e Magnetics : , lin./nonlin capacitors, -inductor (fractional
integrators).
e Thermics : , capacitors.

e Connections : electromagnetic couplings, electromechanic coupling, irreversible
transfers, gyrators, transformers.

27/47



3. Port-Hamiltonian Systems

28/47



Putting all together

Components

Storage by =

g, = VH(x)

de’

This encodes the power

balance
0 = aT-b
dx
= VH(x)T . =
(x) dt
| ——

Network (Dirac structure)

by ayx
b= and a =

with b =J-aand JT = —J.

29/47



Port-Hamiltonian structure

Storage ((1[—? +hoo VH(x)
- _waT +wa +Jwy ' ( )
=y —dwyT Hlyy
—_——— —~
b J a

30/47



Reduction of the linear dissipative structure’

Splitting of

a diagonal matrix and a collection of nonlinear functions

(o) =( )

New Port-Hamiltonian structure

cbx V(%)
o | = (0-R) | )
N——

b a

Interpretation

e J — reduced conservative interconnection,

e R > 0 — resistive interconnection (includes the coefficients from 7).

9. FaLaIzE et HELIE, “Passive guaranteed simulation of analog audio circuits : A port-Hamiltonian approach”,

1/4
2016. 31/47



PyPHS Port-Hamiltonian structure

dx Mux Maw My VH(x)
= | Mux Muww My |- (w)
MyX MyW Myy
N—— ~~
b M a
with

+Hh  Hhw  Hly Rix  Rxw Ry
M=| —Ju +Jww +duwy |- | Rw™ Ruw Ruy
_JXYT _JWyT +Jyy PN RXYT RWYT Ryy

J

32/47



4, Numerical method

33/47



Structure preserving numerical method 1

Objective
Discrete time power balance : $=[k] + /1 [k] + /< [k] = 0.
Choice

SE[K] _ Elk+1]—E[K] _ HXk+1)—H(x[K])

5T = 5T 5T

e Mono-variate case :

Elk+ 1] - E[£] _ $ Ho(xa[k +1]) = Hn(xn[k]) = xn[k + 1] — Xa[K]
5T xolk + 1] = xa[K] 5T

Solution :

dx _ x[k+1]—x[k]
dt 5T 6T

VH(x)  —  VIH(x[k].0x[k]) £ discrete gradient '

with
d - o HH([X + ()-X]”) B H”([X]H) dHn
[V H (x, bx)]n = [0 [(sx]T;o dxn (xn)-

10. Trom et ABE, “Hamiltonian-conserving discrete canonical equations based on variational difference quotients”,

1988. 34/47



Structure preserving numerical method 2

Solution

=3

d ox[k x[k+1]—x[k
5 gl o e

VH(xt) —  VIH(x[K], 0x[K])

=M. zwlk) -

PHS structure is preserved in discrete time = numerical passivity.

Discret PHS

35/47



Relative error on the power balance (PyPHS in

fe = 5000Hz

er = (H(xi 1) — Hxx)) /H(xo)
Grad_ disc
Pnt milieu
- Trapeze
+ Euler imp.
Euler exp.

10 15 20 25 3.0
temps ¢ (s)

e = (H(xk. 1) — H(xx)) /H(xo)

10°
2 Grad. disc
10 Pnt milieu
10 - Trapeze
106 Euler imp.
o Euler exp.
& 10°
10%°

;3:if4\JrMUw\W_, W

-16
10°06 05 1.0 15 20 25 30
temps t (s)

fe = 500Hz

Grad. disc
Pt milieu
- Trapeze

+ Eulerimp.
Euler exp.

'
05 10 15 20 25 3.

temps t (s)

€k

0

H(xy) = H(xp))/Hixo)

10° -

2 F ™7 — Grad. disc.
10 -~ Pt milieu
10 '+ Trapeze
106 Euler imp

. - - Eulerexp.

& 10°
lorlﬂ
10-12
10'14

-1
10 0.0 0.5 1.0 1.5 2.0 25

temps ¢ (s)

36/47



5. Code generation

37/47



PyPHS : an overview

S
— = o
Symbolic Symbolic Numerical
graph PHS PHS
inetwork netj—{JSSUISt_LL_GIBPH_ _tore_ Simulation ! maincop |
"""" [Read/write a s nean Manage iterative i T
graph from manage PHS
netlst file netlist structure —
iDictionary! | Methed | " ‘pata  Numeric |
1 Predefined |Evaluate the T D
! components ! ! numerical E‘—’ ph
i (extendable) | | scheme |

38/47



Python simulation

Formal Method object to numerical Simulation object

1. Parameters are substituted in the discrete PHS.
2. Each symbolic expression is simplified and transformed into a Python function.

3. Updates of internal variables is defined by a message passing system.

Perform simulation

e Inputs are :

1. A sequence of input values,
2. A sequence of control parameters values.

e Apply each update sequentially.

e Results are stored on disk to avoid memory overload.

39/47



C++ code generation

Formal Method object to C++ code

1. Parameters are associated to pointers — can be changed after generation.
2. Each symbolic expression is simplified and transformed into a C++ function.

3. Same message passing system.

Perform simulation

e Inputs are :

1. the sample rate,
2. a sequence of input values,
3. a sequence of control parameters values.

e Apply each update sequentially.

e Results are stored on disk — call back into Python for post processing.

40/47



Juce!! C++ snippets generation for real-time audio plugins

Only for Juce audio FX

1. Call the generated C++ object into Juce Template.
2. Generation of a set of snippets — copy/past into Juce template.

3. The control parameters are automatically associate with sliders — real-time
control.

4. Still experimental.

Yield AU/VST real-time audio plugins

e Can be used in most Digital Audio Workstations.

11. https ://juce.com/

41/47



FAUST !? code generation for real-time audio plugins

Only for FAUST audio FX

e Dedicated Method object : Symbolic pre-inversion of every matrices.

e Fixed number of nonlinear solvers iteration — duplicate of a single iteration.

e A complete iteration is built and encompassed in a dedicated feedback system.
e Control parameters are associated with sliders.

e Still experimental.

Yield VST real-time audio plugins

e Automated optimization of the signal flow.
e Can be used in most Digital Audio Workstations.

e Several compilation targets.

12. http://faust.grame.fr/

42/47


http://faust.grame.fr/

Last word

43/47



PyPHS today (v0.2)

e Open source Library on a GITHUB repository 3.

e Licence CECILL (CEA-CNRS-INRIA Logiciels libres).

e PyTHON 2.7 & 3.5 supported, Mac OSX, Windows 10 and Linux.

e Multiphysical components dictionary.

e Automated graph analysis.

e Automated derivation of the PHS structure and ATEXcode generation.
e Passive guaranteed simulations.

e Automated generation of C++, JUCE and FAUST code.

13. https://pyphs.github.io/pyphs/

44/47


https://pyphs.github.io/pyphs/

PyPHS tomorrow

Scientific results to be implemented

e Anti-aliasing observer (PhD Remy Miiller).

e PHS in scattering variables (~» Wave Digital PHS).

e Piecewise Linear constitutive laws (~ cope with realizability faults).
e Improve Nonlinear solver (# Newton-Raphson).

e Automated derivation of command laws (feedforward + feedback).

45/47



PyPHS tomorrow

Accelerate development
CALL FOR DEVELOPERS

Improve robustness
CALL FOR USERS

46/47



Thank you for your attention

Contact : antoine.falaize@gmail.com

47/47


antoine.falaize@gmail.com

	Intro
	Network
	System representation paradigm: Power graphs
	Electrical graphs
	Mechanical graphs
	Mechanical graphs (dual)
	Magnetical graphs
	Thermal graphs
	Multiphysical graphs: connectors
	Kirchhoff laws on graphs

	Components
	Storage components
	Dissipative components
	Ports

	Port-Hamiltonian system
	Numerical method
	Code generation
	Python simulation
	C++ code generation
	FAUST code generation

	Conclusion
	Today
	Tomorrow


