
PyPHS: An open source Python library dedicated

to the generation of passive guaranteed simulation code

for multiphysical (audio) systems

Antoine Falaizea

IRCAM seminar - Research and Technology

04/12/2017

a Postdoc in the team M2N, LaSIE UMR CNRS 7356, ULR, La Rochelle, France

1/47

Introduction

Objective : Numerical simulation of multiphysical systems

• electronics, mechanics, magnetics, thermics.

• nonlinearities, non ideal behaviors.

• high complexity.

Standard approachs

1. Build a set of elementary physical models.

2. Build a system as the connection of these models.

3. Apply ad-hoc discretization methods.

Difficulties

D1 The stability of a single model simulation is not guaranteed.

D2 This is even worst for the interconnected system.

2/47

But physical systems are passive systems

Power-balance dE
dt + PD + PS = 0

with

• Energy E (J),

• Dissipated power PD (W),

• Sink Power PS (W).

3/47

Our approach

1. Structure physical models according to energy flows

2. Build a system as the structure preserving connection of these models

3. Apply a structure preserving discretization method

Result

D1 The stability of a single model simulation is guaranteed.

D2 The interconnected system inherits from this property.

4/47

Encoding of passivity in PyPHS

5/47

PyPHS : everything is formal

Networks are formal graph structures

• Use of Networkx 1 Python package.

• Creation and manipulation of graphs structures.

Model equations in symbolic form

• Use of Sympy 2 Python package.

• A posteriori manipulation of system’s equations.

• Automated generation of LATEX documentation.

Numerical method is derived formally

• Also use Sympy Python package.

• Symbolic optimization of the update equations.

• Easy analysis of the signal flow → Code generation.

1. see https://networkx.github.io/

2. see http://www.sympy.org/en/index.html

6/47

https://networkx.github.io/
http://www.sympy.org/en/index.html

PyPHS background

Main tools

• Port-Hamiltonian Systems (PHS) formalism 3

• Graph theory 4

2012→2016

• ANR project HaMecMoPSys 5.

• PhD thesis of Antoine Falaize 6 in the team S3AM 7 at IRCAM - UMR STMS 9912 founded by EDITE.

2016→ · · ·
• Implementation of the scientific results obtained between 2012 and 2016.

• Further scientific developments.

3. Maschke, Van Der Schaft et Breedveld, “An intrinsic Hamiltonian formulation of network dynamics :

Non-standard Poisson structures and gyrators”, 1992.

4. Desoer et Kuh, Basic circuit theory, 2009.

5. see https://hamecmopsys.ens2m.fr/

6. Falaize, “Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios :

Approche par réseau de composants et formulation Hamiltonienne à Ports”, 2016.

7. see http://s3am.ircam.fr/?lang=en 7/47

https://hamecmopsys.ens2m.fr/
http://s3am.ircam.fr/?lang=en

Table of contents

1. Network
PyPHS inputs : Graph and Netlist.

2. Components
PyPHS dictionary elements : Graph objects.

3. Port-Hamiltonian Systems
PyPHS Core object : Passive-guaranteed structure.

4. Numerical Method
PyPHS Method object : Structure preserving numerical scheme.

5. Code generation
PyPHS outputs : Python, C++, Juce and FAUST.

8/47

Network

= −

9/47

System representation paradigm : Power graphs

Directed graphs with self loops

• Set of nodes N = {N1, · · · , Nn} .

• Set of edges B = {B1, · · · , Bn} with Bi = (n,m) ∈ N2.

• Direction : Bi ≡ n→ m

Receiver convention

• Each edge ≡ two power variables : Flow and Effort

• Flow f : defined through the edges.

• Effort e : defined across the edges as the difference of two quantities.

• Power received by the edge : P = f e (W).

Connection ≡ Nodes identification

+ =

10/47

Electrical graphs

Physical quantities

Flow = Current (A), Effort = Voltage (V), ε = Potential (V)

Example system

2 Capacitors C1 and C2,

2 Resistors R1 and R2,

1 BJ transistor Q,

3 Ports Vi, Vo and Vc.

Nodes

Graph nodes = Circuit nodes

Ground = Reference node #

Graph

Graph edges = Circuit

components

Note Q ≡ 2 edges

11/47

Mechanical graphs

Physical quantities

Flow = Force (N), Effort = Velocity (m/s), ε = point velocity (m/s)

Example system

2 Masses M1 and M2,

2 Springs K1 and K2,

1 Damper,

1 Port F.

Nodes

Graph nodes = unique velocities

Reference velocity = node #

Graph

Graph edges = components

12/47

Mechanical graphs (dual)

Physical quantities

Flow = Velocity (m/s), Effort = force (N), ε = some force (N)

Example system

2 Masses M1 and M2,

2 Springs K1 and K2,

1 Damper,

1 Port F.

Edges

Serial edges = same velocity

Graph

Add nodes to close the graph

13/47

Magnetical graphs

Physical quantities

Flow = flux variation (V), Effort = magnetomotive force (A), ε = some mmf (A)

Example system

3 metal pieces P1, P2, P3,

1 Air gap G,

1 Flux leakage L,

1 Port M (magnet).

Edges

Serial = same magnetic flux

Graph

Add nodes to close the graph

14/47

Thermal graphs

Physical quantities

Flow = entropy variation (W/K), Effort = temperature (K), ε = temperature (K)

Example system

2 Heat capacities T1 and T2,

1 Heat transfer R,

Nodes

Graph nodes = temperatures

Reference temperature = node #

Graph

Graph edges = components

Note R = 2 edges (irreversibility)

15/47

Multiphysical graphs : connectors

Transformer

e3→4 = 1
α
e1→2,

f3→4 = −α f1→2,

[α] = [f3→4]
[f1→2]

.

Gyrator

e3→4 = α f1→2,

f3→4 = − 1
α
e1→2,

[α] = [e3→4]
[f1→2]

.

Conserving connection
In each case : P3→4 = −P1→2

16/47

Kirchhoff laws on graphs

Example : RLC

Incidence Matrix

[Γ]n,b =

{
1 if edge b is ingoing node n,

−1 if edge b is outgoing node n.

Γ =

BR BL BC BI


0 0 +1 −1 #

−1 0 0 +1 N1

+1 −1 0 0 N2

0 +1 −1 0 N3

Reduced incidence Matrix

Arbitrary reference node #

Γ =

B1 · · · BnB


γ0 #

N1

γ
...

NnN

,

Generalized Kirchhoff’s laws

• Efforts e ∈ RnB , flows f ∈ RnB .

• Node quantities p ∈ RnN .

• γᵀp = e, (KVL).

• γf = 0, (KCL).
17/47

Dirac structure D = Kirchhoff laws on graphs

Edges splitting
Depends on the components

Flow controlled f→ edge → e.

Effort controlled e→ edge → f.

Outputs a ∈ RnB .

Inputs b ∈ RnB .

RLC example
BL is e-controlled, BR , BC , BI are f-controlled.

(
γ0

γe γf

)
=

BL BR BC BI


0 0 +1 −1 N0

0 −1 0 +1 N1

−1 +1 0 0 N2

+1 0 −1 0 N3

.

Realizability criterion
If γf is invertible, then ∃!J s.t.

b = J · a.

Dirac structure

1. eb = γᵀe · p and ea = γᵀf · p,

2. γefa = −γf · fb,

3. γef = γ−1
f · γe,

(
eb
fb

)
︸ ︷︷ ︸

b

=

(
0 γᵀef
−γef 0

)
︸ ︷︷ ︸

J

(
fa

eb

)
︸ ︷︷ ︸

a

.

J is skew-symmetric ⇒ aᵀ · b = aᵀ · J · a = 0.

This is the Tellegen’s theorem :∑nB
n en fn =

∑nB
n Pn = 0.

18/47

PyPHS realizability analysis

Automated construction of the Dirac structure

Algorithme 8

Data A netlist and a dictionary of components.

Résult • If realizable :

1. partition B = [Be, Bf],

2. structure b = J · a.

• Else : Realizability fault detection → the user correct the

netlist.

8. Falaize et Hélie, “Passive guaranteed simulation of analog audio circuits : A port-Hamiltonian approach”,

2016.

19/47

Components

= −

20/47

Storage components (definitions)

Constitutive relation for component s

Storage function (Hamiltonian) Hs of the state xs .

Stored energy Es(t) = Hs
(
xs(t)

)
≥ 0.

Received power dEs
dt

= H′s
(
xs
) dxs

dt

Power variables for component s

Received power dEs
dt

= es fs .

e-controlled es = dxs
dt

=⇒ fs = H′s
(
xs
)
.

f-controlled fs = dxs
dt

=⇒ es = H′s
(
xs
)
.

Total energy stored in nE storage edges
• x = (x1, · · · , xnE).

• E = H
(
x
)

=
∑nE

s=1 Hs(xs) ≥ 0.

• dE
dt

= ∇Hᵀ dx
dt

=
∑nE

s=1
dHs
dxs

dxs
dt

.

21/47

Storage components (examples)

Mass (flow=velocity, effort=force)

State momentum xm = mvm.

Hamiltonian kinetic energy Hm(xm) =
x2
m

2 m
.

Flow mass velocity fm = H′m(xm) = xm
m

.

Effort inertial force em = dxm
dt

= m dvm
dt

.

Capacitor

State charge qC .

Hamiltonian electrostatic energy HC (xC) =
x2
C

2 C
.

Flow current fC = dxC
dt

= dqC
dt

.

Effort voltage eC = H′C (xC) = xC
C

.

22/47

Dissipative components (definitions)

Constitutive relation for component d
Dissipation function zd of the variable wd .

Received (dissipated) power PDd (t) = zd
(
wd (t)

)
≥ 0.

Power variables for component d

Received power PDd (t) = ed fd ≥ 0

e-controlled ed = wd =⇒ fd = zd
(
wd

)
.

f-controlled fd = wd =⇒ ed = zd
(
wd

)
.

Total power dissipated in nD dissipative

edges
• w = (w1, · · · ,wnD).

• z(w) = (z1(w1), · · · , znD (wnD)).

• PD = z(w)ᵀ · w =
∑nD

d=1 zd (wd)wd ≥ 0.

23/47

Dissipative components (examples)

Dashpot (flow=force, effort=velocity)

Variable elongation velocity wD = vD .

Function resistance force zD(wD) = D wD , with D > 0.

Flow force fD = zD(wD) = D vD .

Effort velocity eD = wD = vD .

Dissipated Power PD = fD eD = R v2
D

Resistor

Variable current wR = iR .

Function resistance voltage zR(wR) = R iR , with R > 0.

Flow current fR = wR = iR .

Effort velocity eR = zR(wR) = R iR .

Dissipated Power PD = fR eR = R i2R

24/47

Ports (definitions)

Input and output on port p

Actuated quantity u (input) and Observed quantity y

(output).

Received Power PSp(t) = up(t) yp(t).

The power PSp is the power that goes out

of the system on port p.
Ports are power sink.

Power variables for port p

Received power PSp(t) = ep fp

e-controlled ep = yp =⇒ fp = up (flow source).

f-controlled fp = yp =⇒ ep = up (effort source).

Total power on nS port edges
• u = (u1, · · · , unS).

• y = (y1, · · · , ynS).

• PS = uᵀ · y =
∑nS

p=1 up yp .
25/47

Ports (examples)

Voltage source

Input voltage uU = vU .

Output current yU = iU .

Flow current fU = yU .

Effort voltage eU = uU .

Received Power PS = fU eU = vU iU .

Imposed force (flow=force, effort=velocity)

Input forceuU = fU .

Output velocity yU = vU .

Flow force fU = uU .

Effort velocity eU = yU .

Received Power PS = fU eU = fU vU .

26/47

PyPHS Dictionary (v0.2)

• Mechanics (1D) : masses, springs lin./nonlin. (cubic, saturating, etc.),

lin./nonlin. damping, visco-elastic (fractional derivatives).

• Electronics : batteries, coils and lin./nonlin. capacitors, resistors, transistors,

diodes, triodes.

• Magnetics : Magnets, lin./nonlin capacitors, resisto-inductor (fractional

integrators).

• Thermics : heat sources, capacitors.

• Connections : electromagnetic couplings, electromechanic coupling, irreversible

transfers, gyrators, transformers.

27/47

3. Port-Hamiltonian Systems

28/47

Putting all together

Components

Storage bx = dx
dt

, ax = ∇H(x)

Dissipation bw = w, aw = z(w)

Ports by = y, by = u

This encodes the power

balance

0 = aᵀ · b

= ∇H(x)ᵀ ·
dx

dt︸ ︷︷ ︸
dE
dt

+ z(w) · w︸ ︷︷ ︸
PD

+ uᵀ · y︸ ︷︷ ︸
PS

Network (Dirac structure)

b =

 bx

bw

by

 and a =

 ax

aw

ay


with b = J · a and Jᵀ = −J.

29/47

Port-Hamiltonian structure

Storage

Dissipation

Ports


dx
dt

w

y


︸ ︷︷ ︸

b

=

 +Jxx +Jxw +Jxy

−Jxw
ᵀ +Jww +Jwy

−Jxy
ᵀ −Jwy

ᵀ +Jyy


︸ ︷︷ ︸

J

·

 ∇H(x)

z(w)

u


︸ ︷︷ ︸

a

30/47

Reduction of the linear dissipative structure 9

Splitting of z
Zl a diagonal matrix and znl a collection of nonlinear functions

w =

(
wl

wnl

)
, z(w)=

(
Zl · wl

znl(wnl)

)
,

New Port-Hamiltonian structure
dx
dt

wnl

y


︸ ︷︷ ︸

b̂

=
(

Ĵ− R
)

︸ ︷︷ ︸
M

·

 ∇H(x)

znl(wnl)

u


︸ ︷︷ ︸

â

Interpretation

• Ĵ→ reduced conservative interconnection,

• R � 0→ resistive interconnection (includes the coefficients from Zl).

9. Falaize et Hélie, “Passive guaranteed simulation of analog audio circuits : A port-Hamiltonian approach”,

2016.
31/47

PyPHS Port-Hamiltonian structure


dx
dt

w

y


︸ ︷︷ ︸

b

=

 Mxx Mxw Mxy

Mwx Mww Mwy

Myx Myw Myy


︸ ︷︷ ︸

M

·

 ∇H(x)

z(w)

u


︸ ︷︷ ︸

a

with

M =

 +Jxx +Jxw +Jxy

−Jxw
ᵀ +Jww +Jwy

−Jxy
ᵀ −Jwy

ᵀ +Jyy


︸ ︷︷ ︸

J

−

 Rxx Rxw Rxy

Rxw
ᵀ Rww Rwy

Rxy
ᵀ Rwy

ᵀ Ryy


︸ ︷︷ ︸

R

32/47

4. Numerical method

33/47

Structure preserving numerical method 1

Objective

Discrete time power balance : δE
δT

[k] + PD[k] + PS[k] = 0.

Choice

• δE [k]
δT

= E [k+1]−E [k]
δT

= H(x[k+1])−H(x[k])
δT

• Mono-variate case :

E[k + 1]− E[k]

δT
=
∑
n

Hn(xn[k + 1])−Hn(xn[k])

xn[k + 1]− xn[k]
· xn[k + 1]− xn[k]

δT

Solution :

dx
dt
−→ δx[k]

δT
= x[k+1]−x[k]

δT

∇H(x) −→ ∇dH
(
x[k], δx[k]

)
, discrete gradient 10

with [
∇dH

(
x, δx

)]
n

=
Hn

(
[x + δx]n

)
−Hn

(
[x]n
)

[δx]n
−→

[δx]n→0

dHn

dxn
(xn).

10. Itoh et Abe, “Hamiltonian-conserving discrete canonical equations based on variational difference quotients”,

1988. 34/47

Structure preserving numerical method 2

Solution

dx
dt −→ δx[k]

δT = x[k+1]−x[k]
δT

∇H(x) −→ ∇dH
(
x[k], δx[k]

)
Discret PHS 

δx[k]
δT

w[k]

y[k]

=M ·

∇dH
(
x[k], δx[k]

)
z(w[k])

u[k]

 .

PHS structure is preserved in discrete time ⇒ numerical passivity.

35/47

Relative error on the power balance (PyPHS in blue)

fe = 5000Hz fe = 500Hz

fe = 50Hz fe = 5Hz

36/47

5. Code generation

37/47

PyPHS : an overview

38/47

Python simulation

Formal Method object to numerical Simulation object

1. Parameters are substituted in the discrete PHS.

2. Each symbolic expression is simplified and transformed into a Python function.

3. Updates of internal variables is defined by a message passing system.

Perform simulation

• Inputs are :

1. A sequence of input values,

2. A sequence of control parameters values.

• Apply each update sequentially.

• Results are stored on disk to avoid memory overload.

39/47

C++ code generation

Formal Method object to C++ code

1. Parameters are associated to pointers → can be changed after generation.

2. Each symbolic expression is simplified and transformed into a C++ function.

3. Same message passing system.

Perform simulation

• Inputs are :

1. the sample rate,

2. a sequence of input values,

3. a sequence of control parameters values.

• Apply each update sequentially.

• Results are stored on disk → call back into Python for post processing.

40/47

Juce 11 C++ snippets generation for real-time audio plugins

Only for Juce audio FX

1. Call the generated C++ object into Juce Template.

2. Generation of a set of snippets → copy/past into Juce template.

3. The control parameters are automatically associate with sliders → real-time

control.

4. Still experimental.

Yield AU/VST real-time audio plugins

• Can be used in most Digital Audio Workstations.

11. https ://juce.com/

41/47

FAUST 12 code generation for real-time audio plugins

Only for FAUST audio FX

• Dedicated Method object : Symbolic pre-inversion of every matrices.

• Fixed number of nonlinear solvers iteration → duplicate of a single iteration.

• A complete iteration is built and encompassed in a dedicated feedback system.

• Control parameters are associated with sliders.

• Still experimental.

Yield VST real-time audio plugins

• Automated optimization of the signal flow.

• Can be used in most Digital Audio Workstations.

• Several compilation targets.

12. http://faust.grame.fr/

42/47

http://faust.grame.fr/

Last word

43/47

PyPHS today (v0.2)

• Open source Library on a Github repository 13.

• Licence CeCILL (CEA-CNRS-INRIA Logiciels libres).

• Python 2.7 & 3.5 supported, Mac OSX, Windows 10 and Linux.

• Multiphysical components dictionary.

• Automated graph analysis.

• Automated derivation of the PHS structure and LATEXcode generation.

• Passive guaranteed simulations.

• Automated generation of C++, Juce and FAUST code.

13. https://pyphs.github.io/pyphs/

44/47

https://pyphs.github.io/pyphs/

PyPHS tomorrow

Scientific results to be implemented

• Anti-aliasing observer (PhD Remy Müller).

• PHS in scattering variables (Wave Digital PHS).

• Piecewise Linear constitutive laws (cope with realizability faults).

• Improve Nonlinear solver (6= Newton-Raphson).

• Automated derivation of command laws (feedforward + feedback).

• ...

45/47

PyPHS tomorrow

Accelerate development
CALL FOR DEVELOPERS

Improve robustness
CALL FOR USERS

46/47

Thank you for your attention
Contact : antoine.falaize@gmail.com

47/47

antoine.falaize@gmail.com

	Intro
	Network
	System representation paradigm: Power graphs
	Electrical graphs
	Mechanical graphs
	Mechanical graphs (dual)
	Magnetical graphs
	Thermal graphs
	Multiphysical graphs: connectors
	Kirchhoff laws on graphs

	Components
	Storage components
	Dissipative components
	Ports

	Port-Hamiltonian system
	Numerical method
	Code generation
	Python simulation
	C++ code generation
	FAUST code generation

	Conclusion
	Today
	Tomorrow

