PyPHS: An open source Python library dedicated to the generation of passive guaranteed simulation code for multiphysical (audio) systems

Antoine Falaizea

IRCAM seminar - Research and Technology
04/12/2017

a Postdoc in the team M2N, LaSIE UMR CNRS 7356, ULR, La Rochelle, France
Objective: Numerical simulation of multiphysical systems

- electronics, mechanics, magnetics, thermics.
- nonlinearities, non-ideal behaviors.
- high complexity.

Standard approaches

1. Build a set of elementary physical models.
2. Build a system as the connection of these models.
3. Apply \textit{ad-hoc} discretization methods.

Difficulties

D1 The stability of a single model simulation is not guaranteed.
D2 This is even worst for the interconnected system.
But physical systems are **passive** systems

Power-balance \[\frac{dE}{dt} + P_D + P_S = 0 \]

with

- Energy \(E \) (J),
- Dissipated power \(P_D \) (W),
- Sink Power \(P_S \) (W).
Our approach

1. Structure physical models according to energy flows

2. Build a system as the structure preserving connection of these models

3. Apply a structure preserving discretization method

Result

D1 The stability of a single model simulation is guaranteed.
D2 The interconnected system inherits from this property.
Encoding of passivity in PyPHS

Multi-physical system

Components

Network

Port-Hamiltonian System (PHS)

Structure preserving numerical method

Discrete PHS

Conservative interconnection

$\mathcal{D} : \frac{dE}{dt} + P_D + P_S = 0$

$\mathcal{D} : \frac{\delta E}{\delta t} + P_D + P_S = 0$
PyPHS: everything is formal

Networks are formal graph structures

- Use of networkx\(^1\) Python package.
- Creation and manipulation of graphs structures.

Model equations in symbolic form

- Use of sympy\(^2\) Python package.
- A posteriori manipulation of system’s equations.
- Automated generation of \LaTeX\ documentation.

Numerical method is derived formally

- Also use sympy Python package.
- Symbolic optimization of the update equations.
- Easy analysis of the signal flow \(\rightarrow\) Code generation.

1. see https://networkx.github.io/
2. see http://www.sympy.org/en/index.html
PyPHS background

Main tools

- Port-Hamiltonian Systems (PHS) formalism
- Graph theory

2012→2016

- ANR project HaMecMoPSys.
- PhD thesis of Antoine Falaize in the team S3AM at IRCAM - UMR STMS 9912 founded by EDITE.

2016→···

- Implementation of the scientific results obtained between 2012 and 2016.
- Further scientific developments.

5. see https://hamecmopsys.ens2m.fr/
7. see http://s3am.ircam.fr/?lang=en
1. Network
PyPHS inputs: Graph and Netlist.

2. Components
PyPHS dictionary elements: Graph objects.

3. Port-Hamiltonian Systems
PyPHS Core object: Passive-guaranteed structure.

4. Numerical Method
PyPHS Method object: Structure preserving numerical scheme.

5. Code generation
PyPHS outputs: Python, C++, JUCE and FAUST.
Network
System representation paradigm: Power graphs

Directed graphs with self loops

- Set of nodes \(N = \{N_1, \ldots, N_n\} \).
- Set of edges \(B = \{B_1, \ldots, B_n\} \) with \(B_i = (n, m) \in N^2 \).
- Direction: \(B_i \equiv n \rightarrow m \)

Receiver convention

- Each edge \(\equiv \) two power variables: Flow and Effort.
- Flow \(f \): defined through the edges.
- Effort \(e \): defined across the edges as the difference of two quantities.
- Power received by the edge: \(P = f e \) (W).

Connection \(\equiv \) Nodes identification

\[\begin{align*}
\text{A} & \rightarrow \text{C} \\
\text{B} & \rightarrow \text{C} \\
\text{C} & \rightarrow \text{D} \\
\text{A} & \rightarrow \text{C} \\
\text{A} & \rightarrow \text{B} \\
\text{B} & \rightarrow \text{E} \\
\text{C} & \rightarrow \text{D} \\
\text{D} & \rightarrow \text{E} \\
\text{E} & \rightarrow \text{B}
\end{align*} \]
Electrical graphs

Physical quantities

Flow = Current (A), Effort = Voltage (V), ϵ = Potential (V)

Example system

2 Capacitors C1 and C2,
2 Resistors R1 and R2,
1 BJ transistor Q,
3 Ports Vi, Vo and Vc.

Nodes

Graph nodes = Circuit nodes
Ground = Reference node #

Graph

Graph edges = Circuit components
Note Q \equiv 2 edges
Mechanical graphs

Physical quantities

Flow = Force (N), Effort = Velocity (m/s), ϵ = point velocity (m/s)

Example system

2 Masses M1 and M2,
2 Springs K1 and K2,
1 Damper,
1 Port F.
Mechanical graphs (dual)

Physical quantities

Flow = Velocity (m/s), Effort = force (N), \(\epsilon = \) some force (N)

Example system

2 Masses M1 and M2,
2 Springs K1 and K2,
1 Damper,
1 Port F.

Edges

Serial edges = same velocity

Graph

Add nodes to close the graph
Magnetical graphs

Physical quantities

Flow = flux variation (V), Effort = magnetomotive force (A), $\epsilon = \text{some mmf (A)}$

Example system

3 metal pieces P1, P2, P3,
1 Air gap G,
1 Flux leakage L,
1 Port M (magnet).

Edges

Serial = same magnetic flux

Graph

Add nodes to close the graph
Thermal graphs

Physical quantities

Flow = entropy variation (W/K), Effort = temperature (K), $\epsilon = \text{temperature (K)}$

Example system

2 Heat capacities T_1 and T_2, 1 Heat transfer R,

Nodes

Graph

Graph nodes = temperatures
Reference temperature = node #

Graph edges = components
Note $R = 2$ edges (irreversibility)
Transformer

\[e_{3\to4} = \frac{1}{\alpha} e_{1\to2}, \]
\[f_{3\to4} = -\alpha f_{1\to2}, \]
\[[\alpha] = \frac{[f_{3\to4}]}{[f_{1\to2}]} . \]

Gyrator

\[e_{3\to4} = \alpha f_{1\to2}, \]
\[f_{3\to4} = -\frac{1}{\alpha} e_{1\to2}, \]
\[[\alpha] = \frac{[e_{3\to4}]}{[f_{1\to2}]} . \]

Conserving connection

In each case: \(P_{3\to4} = -P_{1\to2} \)
Kirchhoff laws on graphs

Example: RLC

![RLC Circuit Diagram]

Incidence Matrix

\[
[\Gamma]_{n,b} = \begin{cases}
1 & \text{if edge } b \text{ is ingoing node } n, \\
-1 & \text{if edge } b \text{ is outgoing node } n.
\end{cases}
\]

\[
\Gamma = \begin{pmatrix}
B_R & B_L & B_C & B_I \\
0 & 0 & +1 & -1 \\
-1 & 0 & 0 & +1 \\
+1 & -1 & 0 & 0 \\
0 & +1 & -1 & 0
\end{pmatrix}
\]

Reduced incidence Matrix

Arbitrary reference node

\[
\Gamma = \begin{pmatrix}
B_1 & \cdots & B_{n_B}
\end{pmatrix}
\]

Generalized Kirchhoff’s laws

- Efforts \(e \in \mathbb{R}^{n_B} \), flows \(f \in \mathbb{R}^{n_B} \).
- Node quantities \(p \in \mathbb{R}^{n_N} \).
- \(\gamma^T p = e \), (KVL).
- \(\gamma^T f = 0 \), (KCL).
Dirac structure $\mathcal{D} = $ Kirchhoff laws on graphs

Edges splitting

Depends on the components

- **Flow controlled** $\mathbf{f} \rightarrow \text{edge} \rightarrow \mathbf{e}$.
- **Effort controlled** $\mathbf{e} \rightarrow \text{edge} \rightarrow \mathbf{f}$.

Outputs $\mathbf{a} \in \mathbb{R}^{n_B}$.

Inputs $\mathbf{b} \in \mathbb{R}^{n_B}$.

RLC example

B_L is \mathbf{e}-controlled, B_R, B_C, B_I are \mathbf{f}-controlled.

\[
\begin{bmatrix}
B_L & B_R & B_C & B_I \\
0 & 0 & +1 & -1 \\
0 & -1 & 0 & +1 \\
-1 & +1 & 0 & 0 \\
+1 & 0 & -1 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\gamma_0 \\
\gamma_e \\
\gamma_f \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
e_b \\
f_b \\
\end{bmatrix}
= \begin{bmatrix} 0 & \gamma_e^T \\
-\gamma_e & 0 \end{bmatrix} \begin{bmatrix} \gamma_f & 0 \\
0 & e_b \end{bmatrix}
\]

J is skew-symmetric $\Rightarrow \mathbf{a}^T \cdot \mathbf{b} = \mathbf{a}^T \cdot J \cdot \mathbf{a} = 0$.

This is the **Tellegen’s theorem**:

$$\sum_{n} e_n f_n = \sum_{n} P_n = 0.$$

Realizability criterion

If γ_f is invertible, then $\exists! J$ s.t.

$\mathbf{b} = J \cdot \mathbf{a}$.

Dirac structure

1. $\mathbf{e}_b = \gamma_e^T \cdot \mathbf{p}$ and $\mathbf{e}_a = \gamma_f^T \cdot \mathbf{p}$,
2. $\gamma_e \mathbf{f}_a = -\gamma_f \cdot \mathbf{f}_b$,
3. $\gamma_e \mathbf{f} = \gamma_f^{-1} \cdot \gamma_e$.

\[
\frac{dE}{dt}
\]

$P_D \rightarrow \mathcal{D} \rightarrow P_S$
Automated construction of the Dirac structure

Algorithm

Data A netlist and a dictionary of components.

Résult • If realizable:
 1. partition $B = [B_e, B_f]$,
 2. structure $b = J \cdot a$.

 • Else: Realizability fault detection \rightarrow the user correct the netlist.

Components

\[\text{Components} = \text{Diagram 1} - \text{Diagram 2}\]
Storage components (definitions)

Constitutive relation for component s

Storage function (Hamiltonian) H_s of the state x_s.

- Stored energy $E_s(t) = H_s(x_s(t)) \geq 0$.
- Received power $\frac{dE_s}{dt} = H'_s(x_s) \frac{dx_s}{dt}$

Power variables for component s

Received power $\frac{dE_s}{dt} = \epsilon_s f_s$.

- ϵ-controlled $\epsilon_s = \frac{dx_s}{dt} \implies f_s = H'_s(x_s)$.
- f-controlled $f_s = \frac{dx_s}{dt} \implies \epsilon_s = H'_s(x_s)$.

Total energy stored in n_E storage edges

- $x = (x_1, \cdots, x_{n_E})$.
- $E = H(x) = \sum_{s=1}^{n_E} H_s(x_s) \geq 0$.
- $\frac{dE}{dt} = \nabla H^T \frac{dx}{dt} = \sum_{s=1}^{n_E} \frac{dH_s}{dx_s} \frac{dx_s}{dt}$.
Storage components (examples)

Mass (flow=velocity, effort=force)

State momentum \(x_m = m v_m \).

Hamiltonian kinetic energy \(H_m(x_m) = \frac{x_m^2}{2m} \).

Flow mass velocity \(f_m = H'_m(x_m) = \frac{x_m}{m} \).

Effort inertial force \(e_m = \frac{dx_m}{dt} = m \frac{dv_m}{dt} \).

Capacitor

State charge \(q_C \).

Hamiltonian electrostatic energy \(H_C(x_C) = \frac{x_C^2}{2C} \).

Flow current \(f_C = \frac{dx_C}{dt} = \frac{dq_C}{dt} \).

Effort voltage \(e_C = H'_C(x_C) = \frac{x_C}{C} \).
Dissipative components (definitions)

Constitutive relation for component d

Dissipation function z_d of the variable w_d.

Received (dissipated) power $P_{Dd}(t) = z_d(w_d(t)) \geq 0$.

Power variables for component d

Received power $P_{Dd}(t) = \epsilon_d \phi_d \geq 0$

- ϵ-controlled $\epsilon_d = w_d \implies \phi_d = z_d(w_d)$.
- ϕ-controlled $\phi_d = w_d \implies \epsilon_d = z_d(w_d)$.

Total power dissipated in n_D dissipative edges

- $w = (w_1, \ldots, w_{n_D})$.
- $z(w) = (z_1(w_1), \ldots, z_{n_D}(w_{n_D}))$.
- $P_D = z(w)^T \cdot w = \sum_{d=1}^{n_D} z_d(w_d) w_d \geq 0$.

$D : \frac{dE}{dt} + P_D + P_S = 0$
Dissipative components (examples)

Dashpot (flow=force, effort=velocity)

- **Variable** elongation velocity \(w_D = v_D \).
- **Function** resistance force \(z_D(w_D) = D \, w_D \), with \(D > 0 \).
 - **Flow** force \(f_D = z_D(w_D) = D \, v_D \).
 - **Effort** velocity \(e_D = w_D = v_D \).
 - Dissipated Power \(P_D = f_D \, e_D = R \, v_D^2 \).

Resistor

- **Variable** current \(w_R = i_R \).
- **Function** resistance voltage \(z_R(w_R) = R \, i_R \), with \(R > 0 \).
 - **Flow** current \(f_R = w_R = i_R \).
 - **Effort** velocity \(e_R = z_R(w_R) = R \, i_R \).
 - Dissipated Power \(P_D = f_R \, e_R = R \, i_R^2 \).
Ports (definitions)

Input and output on port p

Actuated quantity u (input) and Observed quantity y (output).

Received Power $P_{Sp}(t) = u_p(t) y_p(t)$.

The power P_{Sp} is the power that goes out of the system on port p.

Ports are power sink.

Power variables for port p

Received power $P_{Sp}(t) = \epsilon_p \mathbf{f}_p$

- ϵ-controlled $\epsilon_p = y_p \implies \mathbf{f}_p = u_p$ (flow source).
- \mathbf{f}-controlled $\mathbf{f}_p = y_p \implies \epsilon_p = u_p$ (effort source).

Total power on n_S port edges

- $u = (u_1, \cdots, u_{n_S})$.
- $y = (y_1, \cdots, y_{n_S})$.
- $P_S = u^T \cdot y = \sum_{p=1}^{n_S} u_p y_p$.
Ports (examples)

Voltage source

Input voltage \(u_U = v_U \).
Output current \(y_U = i_U \).
Flow current \(f_U = y_U \).
Effort voltage \(e_U = u_U \).
Received Power \(P_S = f_U e_U = v_U i_U \).

Imposed force (flow=force, effort=velocity)

Input force \(u_U = f_U \).
Output velocity \(y_U = v_U \).
Flow force \(f_U = u_U \).
Effort velocity \(e_U = y_U \).
Received Power \(P_S = f_U e_U = f_U v_U \).
• **Mechanics (1D)**: masses, springs lin./nonlin. (cubic, saturating, etc.), lin./nonlin. damping, visco-elastic (fractional derivatives).
• **Electronics**: batteries, coils and lin./nonlin. capacitors, resistors, transistors, diodes, triodes.
• **Magnetics**: Magnets, lin./nonlin capacitors, resisto-inductor (fractional integrators).
• **Thermics**: heat sources, capacitors.
• **Connections**: electromagnetic couplings, electromechanic coupling, irreversible transfers, gyrators, transformers.
3. Port-Hamiltonian Systems

\[\mathcal{D} : \frac{dE}{dt} + P_D + P_S = 0 \]
Putting all together

Components

- **Storage**: $b_x = \frac{dx}{dt}, \ a_x = \nabla H(x)$
- **Dissipation**: $b_w = w, \ a_w = z(w)$
- **Ports**: $b_y = y, \ b_y = u$

This encodes the power balance

$$0 = a^T \cdot b = \nabla H(x)^T \cdot \frac{dx}{dt} + z(w) \cdot w + u^T \cdot y$$

Network (Dirac structure)

$$b = \begin{pmatrix} b_x \\ b_w \\ b_y \end{pmatrix} \quad \text{and} \quad a = \begin{pmatrix} a_x \\ a_w \\ ay \end{pmatrix}$$

with $b = J \cdot a$ and $J^T = -J$.

Diagram:

- dE\(\frac{dt}{dt}\)
- P_D\(\rightarrow\)$\rightarrow\) P_S
- \mathcal{D}: $\frac{dE}{dt} + P_D + P_S = 0$
Port-Hamiltonian structure

\[
\begin{align*}
\text{Storage} & \quad \begin{pmatrix}
\frac{dx}{dt} \\
\mathbf{w} \\
\mathbf{y}
\end{pmatrix} = \begin{pmatrix}
+J_{xx} & +J_{xw} & +J_{xy} \\
-J_{xw}^T & +J_{ww} & +J_{wy} \\
-J_{xy}^T & -J_{wy}^T & +J_{yy}
\end{pmatrix} \cdot \begin{pmatrix}
\nabla H(\mathbf{x}) \\
\mathbf{z}(\mathbf{w}) \\
\mathbf{u}
\end{pmatrix}
\end{align*}
\]
Reduction of the linear dissipative structure

Splitting of z

Z_l a diagonal matrix and z_{nl} a collection of nonlinear functions

$$w = \begin{pmatrix} w_l \\ w_{nl} \end{pmatrix}, \quad z(w) = \begin{pmatrix} Z_l \cdot w_l \\ z_{nl}(w_{nl}) \end{pmatrix},$$

New Port-Hamiltonian structure

$$\begin{pmatrix} \frac{dx}{dt} \\ w_{nl} \\ y \end{pmatrix} = \begin{pmatrix} \hat{J} - R \\ \nabla H(x) \\ z_{nl}(w_{nl}) \end{pmatrix} \cdot \begin{pmatrix} \frac{\nabla H(x)}{z_{nl}(w_{nl})} \\ u \end{pmatrix}$$

Interpretation

- $\hat{J} \rightarrow$ reduced conservative interconnection,
- $R \succeq 0 \rightarrow$ resistive interconnection (includes the coefficients from Z_l).

PyPHS Port-Hamiltonian structure

\[
\begin{pmatrix}
\frac{dx}{dt} \\
w \\
y
\end{pmatrix}
= \begin{pmatrix}
M_{xx} & M_{xw} & M_{xy} \\
M_{wx} & M_{ww} & M_{wy} \\
M_{yx} & M_{yw} & M_{yy}
\end{pmatrix}
\cdot \begin{pmatrix}
\nabla H(x) \\
z(w) \\
u
\end{pmatrix}
\]

with

\[
M = \begin{pmatrix}
+J_{xx} & +J_{xw} & +J_{xy} \\
-J_{xw}^T & +J_{ww} & +J_{wy} \\
-J_{xy}^T & -J_{wy}^T & +J_{yy}
\end{pmatrix}
- \begin{pmatrix}
R_{xx} & R_{xw} & R_{xy} \\
R_{wx}^T & R_{ww} & R_{wy} \\
R_{xy}^T & R_{wy}^T & R_{yy}
\end{pmatrix}
\]
4. Numerical method

\[\mathcal{D} : \frac{\delta E}{\delta t} + P_D + P_S = 0 \]
Structure preserving numerical method 1

Objective

Discrete time power balance: \(\frac{\delta E}{\delta T}[k] + P_D[k] + P_S[k] = 0\).

Choice

- \(\frac{\delta E[k]}{\delta T} = \frac{E[k+1] - E[k]}{\delta T} = \frac{H(x[k+1]) - H(x[k])}{\delta T}\)
- Mono-variate case:

\[
\frac{E[k+1] - E[k]}{\delta T} = \sum_n \frac{H_n(x_n[k+1]) - H_n(x_n[k])}{x_n[k+1] - x_n[k]} \cdot \frac{x_n[k+1] - x_n[k]}{\delta T}
\]

Solution:

\[
\frac{dx}{dt} \rightarrow \frac{\delta x[k]}{\delta T} = \frac{x[k+1] - x[k]}{\delta T}
\]
\[
\nabla H(x) \rightarrow \nabla^d H(x[k], \delta x[k]) \triangleq \text{discrete gradient}^{10}
\]

with

\[
\left[\nabla^d H(x, \delta x)\right]_n = \frac{H_n([x + \delta x]_n) - H_n([x]_n)}{[\delta x]_n} \rightarrow \frac{dH_n}{dx_n}(x_n).
\]

Solution

\[\frac{dx}{dt} \rightarrow \frac{\delta x[k]}{\delta T} = \frac{x[k+1]-x[k]}{\delta T} \]
\[\nabla H(x) \rightarrow \nabla^d H(x[k], \delta x[k]) \]

Discret PHS

\[
\begin{pmatrix}
\frac{\delta x[k]}{\delta T} \\
w[k] \\
y[k]
\end{pmatrix}
= M \cdot
\begin{pmatrix}
\nabla^d H(x[k], \delta x[k]) \\
z(w[k]) \\
u[k]
\end{pmatrix}.
\]

PHS structure is preserved in discrete time \(\Rightarrow \) numerical passivity.
Relative error on the power balance (PyPHS in blue)

\[f_e = 5000 \text{Hz} \]

\[f_e = 500 \text{Hz} \]

\[f_e = 50 \text{Hz} \]

\[f_e = 5 \text{Hz} \]
5. Code generation
PyPHS: an overview
Python simulation

Formal Method object to numerical Simulation object

1. Parameters are substituted in the discrete PHS.
2. Each symbolic expression is simplified and transformed into a Python function.
3. Updates of internal variables is defined by a message passing system.

Perform simulation

- Inputs are:
 1. A sequence of input values,
 2. A sequence of control parameters values.
- Apply each update sequentially.
- Results are stored on disk to avoid memory overload.
C++ code generation

Formal Method object to C++ code

1. Parameters are associated to pointers → can be changed after generation.
2. Each symbolic expression is simplified and transformed into a C++ function.
3. Same message passing system.

Perform simulation

- Inputs are:
 1. the sample rate,
 2. a sequence of input values,
 3. a sequence of control parameters values.
- Apply each update sequentially.
- Results are stored on disk → call back into Python for post processing.
Only for Juce audio FX

1. Call the generated C++ object into Juce Template.
2. Generation of a set of snippets → copy/paste into Juce template.
3. The control parameters are automatically associate with sliders → real-time control.

Yield AU/VST real-time audio plugins

- Can be used in most Digital Audio Workstations.

Only for FAUST audio FX

- Dedicated Method object: Symbolic pre-inversion of every matrices.
- Fixed number of nonlinear solvers iteration \rightarrow duplicate of a single iteration.
- A complete iteration is built and encompassed in a dedicated feedback system.
- Control parameters are associated with sliders.
- Still experimental.

Yield VST real-time audio plugins

- Automated optimization of the signal flow.
- Can be used in most Digital Audio Workstations.
- Several compilation targets.

Last word
PyPHS today (v0.2)

- Open source Library on a GitHub repository13.
- Licence CeCILL (CEA-CNRS-INRIA Logiciels libres).
- Python 2.7 & 3.5 supported, Mac OSX, Windows 10 and Linux.
- Multiphysical components dictionary.
- Automated graph analysis.
- Automated derivation of the PHS structure and \LaTeX code generation.
- Passive guaranteed simulations.
- Automated generation of C++, JUCE and FAUST code.

13 https://pyphs.github.io/pyphs/
PyPHS tomorrow

Scientific results to be implemented

- Anti-aliasing observer (PhD Remy Müller).
- PHS in scattering variables (\(\leadsto\) Wave Digital PHS).
- Piecewise Linear constitutive laws (\(\leadsto\) cope with realizability faults).
- Improve Nonlinear solver (\(\neq\) Newton-Raphson).
- Automated derivation of command laws (feedforward + feedback).
- ...

Accelerate development
CALL FOR DEVELOPERS

Improve robustness
CALL FOR USERS
Thank you for your attention

Contact: antoine.falaize@gmail.com